A Perspective of Sung-Ik Lee's Major Contributions to Cuprate Superconductivity

Department of Physics, California Institute of Technology, USA

1. Overview

-- Materials synthesis; multi-layer cuprates; infinite-layer electron-type cuprates

2. Multi-layer hole-type cuprate superconductors

-- Increasing anisotropy, charge imbalance, competing orders, and quantum & thermal fluctuations with increasing number of CuO₂ layers

3. Infinite-layer electron-type cuprate superconductors

-- Three-dimensional superconductivity; nodeless energy gap; vortex images & intra-vortex pseudogap

4. Summary

1. Overview

- 2. Multi-layer hole-type cuprate superconductors
- 3. Infinite-layer electron-type cuprate superconductors

4. Summary

Overview of Sung-Ik Lee's Research

in Cuprate Superconductivity

Materials synthesis

- -- Single crystal growth with self-flux method & additional annealing/processing
- -- Polycrystalline sample growth w/ solid-state reaction in a high-pressure chamber
- -- Chemical substitutions in charge reservoir & quantum impurities in CuO₂ planes
- -- Intercalation of organic chains into Bi-2212

Multi-layer hole-type cuprate superconductors

- -- Thermodynamic properties
- -- Vortex dynamics
- -- Increasing anisotropy, charge imbalance, competing order, and thermal & quantum fluctuations with increasing number of CuO₂ planes per unit cell
- -- Importance of inter-layer coupling to cuprate superconductivity

Infinite-layer electron-type cuprate superconductors

- -- Three-dimensional superconductors (ξ_c > c-axis lattice constant c_0)
- -- Node-less energy gap
- -- First (and only to-date) observation of vortex images & intra-vortex pseudogap in electron-type cuprates

1. Overview

- 2. Multi-layer hole-type cuprate superconductors
- 3. Infinite-layer electron-type cuprate superconductors

4. Summary

Key findings from investigations of hole-type multi-layer cuprate superconductors

Increasing anisotropy & thermal fluctuations with increasing n:

Key findings from investigations of hole-type multi-layer

cuprate superconductors - continued

 Comparative studies of the thermodynamic properties of different systems:

E 0.1 #

0.01

0.1

0.6

T/T

1-T/T_

0.8

LSCO

Bi-2212

Na-CCOC

0.4

H_{irr}(T)

0

0.2

TABLE I. Thermodynamic properties of Ca_{1.82}Na_{0.18}CuO₂Cl₂ (Na-CCOC), $La_{1,82}Sr_{0,18}CuO_4$ (LSCO) (Ref. 24). and $Bi_2Sr_2CaCu_2O_{8-\delta}$ (Bi-2212) (Ref. 27).

		T_c^{onset} (K)	к	$\begin{array}{c} H_c(0) \\ (\mathrm{Oe}) \end{array}$	H _{c2} (0) (T)	$\lambda_{ab}(0)$ (Å)
0.0 ²	Na-CCOC	27	89.0	1202	16.9	4380
	LSCO	30	75	2170	21	2380
i	Bi-2212	85	266	9753	156	2438

H.C. Kim et al., Phys. Rev. B 72, 224510 (2005)

 ξ_{ab} (Å)

44.1

33

9.5

Na-CCOC is as anisotropic as Bi-2212, with an even lower superfluid density due to CI at the apical site.

1.0

Key findings from investigations of hole-type multi-layer

cuprate superconductors - continued-

• Cu-NMR & equilibrium magnetization studies show charge imbalance for $n \ge 3$.

The hole doping level for the inner CuO₂ planes (δ_i) is always smaller than that for the outer CuO₂ planes (δ_o), $\delta_i < \delta_o$; and (δ_o/δ_i) increases with increasing n.

H. Kotegawa et al., Phys. Rev. B <u>64</u>, 064515 (2001);
H. Kotegawa et al., Phys. Rev. B <u>69</u>, 014501 (2004);
H. Mukuda et al., Phys. Rev. Lett. <u>96</u>, 087001 (2006);
M.S. Kim et al., Physica C <u>364-365</u>, 228 (2001).

• μ SR shows increasing antiferromagnetic fluctuations (& competing orders) for $n \ge 3$

The inner CuO₂ planes are generally underdoped and exhibit increasing antiferromagnetic fluctuations with increasing n.

K. Tokiwa et al., Int. J. Mod. Phys. B <u>17</u>, 3540 (2003).

 <u>Vortex dynamics</u>: The irreversibility field [H_{irr}(T)/H_{c2}(0)] for H || c-axis decreases with increasing n, whereas the static exponent v associated with the vortex phase transition increases with increasing n, indicating increasing thermal fluctuations with increasing n.

A.D. Beyer et al., Phys. Rev. B <u>76</u>, 140506(R) (2007). M.S. Park et al., Phys. Rev. B <u>77</u>, 024519 (2008).

Controlling the CuO₂ interlayer coupling by

intercalation of organic chains into B-2212

• Evidence of non-existence of superconductivity in an isolated CuO₂ bilayer

Intercalation of organic chains of $[Py-C_nH_{2n+1}]HgI_4$ into Bi-2212 samples. XRD and HRTEM indicated that the organic chains are intercalated uniformly and commensurately into every Bi-O bilayer and they expand the distance between the CuO₂ bilayers by 11.3 Å, 13.7 Å, 17.7 Å, 22.9 Å, 26.7 Å, and 31.6 Å for n = 2, 4, 6, 8, 10, and 12, respectively.

No change in T_c with n, but the shielding fraction diminishes with increasing n, suggesting that an isolated CuO₂ bilayer is not superconducting and that next-nearest-neighbor CuO₂ interlayer coupling is essential for cuprate superconductivity.

M.S. Kim et al., Phys. Rev. B <u>63</u>, 092507 (2001).

Consequence of competing orders on the vortex

dynamics of cuprate superconductors

 Competing orders could reduce the superconducting stiffness, giving rise to enhanced thermal and disorder fluctuations in the vortex state → Thermally induced vortex-liquid state and disorder-induced vortex-glass & Bragg glass for H || c.

Investigation of the vortex-state quantum fluctuations in cuprate superconductors

 $T \rightarrow 0$ (suppressed thermal fluctuations);

H || ab (weak disorder fluctuations due to intrinsic pinning of the CuO_2 planes).

[Balents & Nelson, (1993, 1994)]

- S : vortex smectic
- X : vortex crystal/glass
- VL: vortex liquid

- IS : incommensurate vortex smectic
- IX : incommensurate vortex crystal/glass

Natural consequences of competing orders

Proximity to quantum criticality & quantum fluctuations.

- Reduced superconducting stiffness & extreme type-II nature.
- Unconventional low-energy excitations & pseudogap phenomena.
- Non-universal phenomena among different cuprates.

 α : material parameter, such as the doping level, anisotropy, number of CuO₂ planes per unit cell, disorder, etc.

Probing quantum fluctuations in cuprate superconductors

To probe the quantum fluctuations induced by competing orders, we take $T \rightarrow 0$ to suppress thermal fluctuations and have H || ab to minimize disorder fluctuations.

H-vs.-(T/T_c) phase diagram (H || ab) for a given material parameter α

High-field phase diagrams of the cuprates (H | ab)

Identify a characteristic field H* that separates SC from SC/CO at T = 0: From the irreversibility field $H_{irr}(T,\alpha)$, with $H^*(\alpha) = H_{irr}(T \rightarrow 0, \alpha)$.

- For comparison among different cuprates, find their $H_{c2}(T, \alpha)$ for H || ab:
 - \implies $H_{c2}^{0}(\alpha) = H_{c2}(T \rightarrow 0, \alpha).$

Physical significance of the material dependent parameter a

$\alpha \equiv \gamma^{-1} \left(\delta_{\rm o} / \delta_{\rm i} \right)$	$^{-(n-2)}\delta$, for	' n > 2;
$\alpha \equiv \gamma^{-1} \delta,$	for	[·] n ≤ 2;

 $\gamma = (\xi_{ab}/\xi_c)$: electronic anisotropy; (δ_o/δ_i) : charge imbalance ratio; \mathbf{n} : # of CuO2 layers per unit cell; δ_o : doping level per outer layer; δ : nominal doping level per CuO2 layer; δ_i : doping level per inner layer.

- The outer- and inner-layer doping levels δ_0 and δ_i in multilayered cuprate superconductors can be determined from NMR. [Kotegawa et al. (2001)]
- $\delta_o > \delta_i$ for n > 2 and the charge imbalance ratio (δ_o/δ_i) increases with increasing n. [Kotegawa et al. (2001)]
- Charge imbalance in multilayered cuprate superconductors results in stronger competing orders in the inner layer(s). [Chakravarty et al. (2004)]

Beyer et al. Phys. Rev. B <u>76</u>,140506(R) (2007); Yeh et al., Int. J. Mod. Phys. B <u>19</u>, 285 (2005).

Cuprate Superconductors Investigated

- HgBa₂Ca₂Cu₃O_x (<u>Hg-1223</u>, T_c = 135 K):
- HgBa₂Ca₃Cu₄O_x (<u>Hg-1234</u>, T_c = 125 K):
- HgBa₂Ca₄Cu₅O_x (<u>Hg-1245</u>, T_c = 110 K):
- $La_{0.1}Sr_{0.9}CuO_2$ (La-112, $T_c = 43$ K):
- Nd_{1.85}Ce_{0.15}CuO_{4-δ} (<u>NCCO</u>, T_c = 21 K):

charge-imbalanced hole-type 3-layer cuprate. [Beyer et al. (2007)]

charge-imbalanced hole-type 4-layer cuprate. [Beyer et al. (2007)]

charge-imbalanced hole-type 5-layer cuprate. [Beyer et al. (2007)]

optimally doped electron-type infinite-layer cuprate. [Beyer et al. (2007)]

- optimally doped hole-type 1-layer cuprate. [Yeh et al. (1992)]
- $YBa_2Cu_3O_{7-\delta}$ (Y-123, $T_c = 93 \& 87 K$): optimally and slightly underdoped hole-type 2-layer cuprate. [Yeh et al. (1993); O'Brien et al. (2000)]

• $Bi_2Sr_2CaCu_2O_x$ (<u>Bi-2212</u>, $T_c = 60 \& 93 K$): overdoped hole-typ 2-layer cuprate [Krusin-Elbaum et al. (2004)]

Pulsed-Field Measurements of H_{c2}(T)

Determine $H_{c2}(T)$ by measuring the <u>penetration depth</u> (λ) via <u>frequency shifts</u> (Δ f) in a tunnel diode oscillator (TDO) resonant tank circuit up to 65 Tesla, with the sample contained in one of the component inductors.

[Zapf et al., Phys. Rev. B <u>71</u>, 134526 (2005)]

Pulsed & DC-Field Measurements of H_{im}(T)

Examples of M(T,H) measurements for H_{irr}(T) using various techniques, including the cantilever, Hall probe and SQUID magnetometers:

Summary of high-field magnetization measurements

Field-induced quantum fluctuations exist in all cuprate superconductors.

- Smaller h* implying closer proximity to quantum criticality: h*(Hg-1245) << h*(Hg-1234) ~ h*(Hg-1223) < h*(La-112) < h*(PCCO) < h*(Bi-2212) < h*(Y-123)
- $h^*(\alpha) \equiv H^*(\alpha)/H_{c2}^{ab}(0,\alpha) \equiv H_{irr}^{ab}(0,\alpha)/H_{c2}^{ab}(0,\alpha)$

Beyer et al. Phys. Rev. B 76,140506(R)-(2007); Yeh et al., Int. J. Mod. Phys. B 19, 265 (2005).

Cuprates	Т _с (К)	h*	Туре	Doping Level
La _{0.1} Sr _{0.9} CuO ₂ (La-112)	43	0.28	electron-type	optimally doped
Nd _{1.85} Ce _{0.15} CuO _{4-d} (NCCO)	21	0.53	electron-type	optimally doped
Pr _{1.85} Ce _{0.15} CuO _{4-d} (PCCO)	21	0.53	electron-type	optimally doped
HgBa ₂ Ca ₂ Cu ₃ O _x (Hg-1223)	135	0.25	hole-type	charge imbalance
HgBa ₂ Ca ₃ Cu ₄ O _x (Hg-1234)	125	0.20	hole-type	charge imbalance
HgBa₂Ca₄Cu₅O _x (Hg-1245)	110	0.05	hole-type	charge imbalance
YBa ₂ Cu ₃ O _x (Y-123)	93	0.85	hole-type	optimally doped
YBa ₂ Cu ₃ O _x (Y-123)	87	0.6	hole-type	underdoped
Bi ₂ Sr ₂ CaCu ₂ O _x (Bi-2212)	60	0.45	hole-type	overdoped

<u>Universal correlation of $h^*(\alpha)$ with quantum fluctuations</u>

 $\widehat{\mathsf{h}^{*}}(\alpha) \equiv \left[\mathsf{H}_{irr}^{ab}(0,\alpha)/\mathsf{H}_{c2}^{ab}(0,\alpha)\right] \propto (\alpha - \alpha_{c})^{a}; \qquad \alpha \equiv \gamma^{-1} \left(\delta_{o}/\delta_{i}\right)^{-(n-2)} \delta$ (a ~ 0.5) $\gamma = (\xi_{ab}/\xi_c)$: electronic anisotropy; δ : nominal doping level per CuO₂ layer; δ_{o} : doping level per outer layer;

[for n > 2] n: # of CuO_2 layers per unit cell; (δ_0 / δ_1) : charge imbalance ratio; δ_i : doping level per inner layer.

1. Overview

- 2. Multi-layer hole-type cuprate superconductors
- 3. Infinite-layer electron-type cuprate superconductors

4. Summary

3. Scanning Tunneling Spectroscopic Studies of the Infinite-Layer Electron-Type Guprates Sr_{0.9}La_{0.1}GuO₂

 The tunneling spectra taken over 200 randomly oriented grains appear to be the same without showing any zero-bias anomaly → s-wave pairing symmetry?

Absence of pseudogap above T & strong correlation

The tunneling gap completely vanishes at T_c , indicating no pseudogap above T_c .

- Substitution of La by Gd yields the same $T_c = 43$ K for $Sr_{0.9}Gd_{0.1}CuO_2$.
- $(2\Delta/k_BT_c) \sim 7 >> BCS$ ratio \leftrightarrow strong correlation?

Sr_{0.9}Ln_{0.1}CuO₂ (Ln = La, Gd) are three-dimensional superconductors and are the only cuprate system with c-axis superconducting coherence length ξ_c (= 0.53 nm) > c-axis lattice constant c₀ (= 0.347 nm).

Global effect of quantum impurities on Sr_{0.9}La_{0.1}CuO₂

C.U. Jung et al. Phys. Rev. B<u>65,</u> 172501 (2002).

- Spinless Zn²⁺ impurities: weak effects on T_c.
- Magnetic Ni²⁺ impurities: strong suppression of T_c.

Consistent with conventional superconductors.

Local effects of quantum impurities on n-type Sr_{0.9}La_{0.1}CuO

Zero-Field Quasiparticle Tunneling Spectra in La-112:

Anomalous tunneling spectra & Knight shifts in La-112 due to coexisting superconductivity & competing-orders:

Model fitting to the STS spectra

T-dependent Cu-NMR shifts

 Experimental results may be understood in terms of a nearly isotropic competing order energy gap V_{CO}~ 8 meV and a d-wave superconducting gap ∆_{SC} ~ 12 meV; further confirmed by STM studies of the vortex-state quasiparticle spectra.

Vortex-State Quasiparticle Tunneling Spectra in La-112

Intra- and Inter-Vortex Spectral Comparison & Field-evolution (Infinite-layer electron-type La-112)

Vortex-state quasiparticle spectra in conventional superconductors (w/o ground-state competing orders)

Hess et al., Phys. Rev. Lett. <u>62</u> (1989).

6000 Å

Conductance image of the Abrikosov vortex lattice produced by 1 Tesla magnetic field in NbSe₂ at 1.8 K Bound states inside the vortex core with energies $E_{\mu} = \mu(\Delta^2/E_F)$, $\mu = 1/2$, 3/2, ..., E_F = Fermi energy.

Perspective image of dl/dV-vs.-V as a function of position along a line that intersects a vortex, as represented by the blue arrow on the left figure.

Predictions for the vortex-state quasiparticle spectra in cuprate superconductors (w/o ground-state competing orders)

Premise: Pure d_x2_v2 SC order parameter

- **u**: electron-like quasiparticle amplitude;
- **v**: hole-like quasiparticle amplitude;

u

|v|

Franz & Tesanovic PRL 80, (1998).

Unconventional Spectral Evolution with Magnetic Field

Spatially resolved quasiparticle spectra in Y-123: H > 0

Disordered "vortex halos" with radius $\xi_{halo} \sim 10 \xi_{SC}$.

A. D. Beyer *et al.*, Europhys. Lett. <u>87</u>, 37005 (2009)

Gapped features everywhere in the vortex-state spectra.

Appearance of two new energy scales inside vortices:

$$V_{CO} \& \Delta'$$

Vortex-state local density of states (LDOS) modulations

Energy histograms & spectral evolution with field in Y-123

Energy histogram of conventional type-II SC

A.D. Beyer et al., Europhys. Lett. <u>87</u>, 37005 (2009)

Possible physical origin for asymmetric phase diagrams of cuprate superconductors between hole- and electron-doping :

* The coexisting competing order has an energy scale V_{CO} larger than the superconducting gap Δ_{SC} in the under- and optimally doped hole-type cuprate superconductors, whereas V_{CO} < Δ_{SC} for all electron-type cuprate superconductors, hence no pseudogap above T_C in the latter.

1. Overview

- 2. Multi-layer hole-type cuprate superconductors
- 3. Infinite-layer electron-type cuprate superconductors

4. Summary

4. Summary

Professor Sung-Ik Lee had made many important contributions to the field of cuprate superconductivity, particularly in the following areas:

Materials synthesis

-- Developed novel methods for synthesizing high-quality & unique materials.

<u>Multi-layer hole-type cuprate superconductors</u>

- -- Determined thermodynamic properties and vortex dynamics.
- -- Established that the anisotropy, charge imbalance, competing order, and thermal & quantum fluctuations increase with increasing number of CuO₂ planes per unit cell.
- -- Importance of next-nearest neighbor inter-layer coupling to the occurrence of cuprate superconductivity

Infinite-layer electron-type cuprate superconductors

- -- Three-dimensional superconductors ($\xi_c > c$ -axis lattice constant c_0)
- -- Node-less energy gap due to coexisting competing order & superconductivity
- -- First (and the only) observation of vortex images & intra-vortex pseudogap in electron-type cuprates to date.

my friend Professor 李星翊

哲人日已遠, 典型在夙昔. 風簷展書讀, 古道照顏色.

-- 文天祥"正氣歌"

Although those great philosophers and scholars in history have long left us,

their fine examples remain in our minds 'till this day.

As I unfolded books and began reading in the gentle breeze under the eaves,

I seemed to have seen the images of the great characters shine through the passage of time.

Although Sung-Ik is no longer with us physically, his legacy lives on...

In his fine publications;

In the minds of his loved ones and friends;

and

In the life of all those young people that he had kindly touched upon.