## POSTECH 이성익 교수의 양자 세계에 관한 강연 - 5장 -

## Chapter 5

## The General Structure of Wave Mechanics

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t} \psi(x, t)=H \psi(x, t) \\
& H \cdot u_{E}(x)=E \cdot u_{E}(x) \\
& H=\frac{P_{o p}^{2}}{2 m}+V(x)=\frac{1}{2 m}\left(\frac{\hbar}{i} \frac{d}{d x}\right)^{2}+V(x) \\
& \text { Requirement } \int \psi^{*} \psi d x<\infty
\end{aligned}
$$

$\psi(x)=\sum_{E} C_{E} u_{E}(x) \leftarrow$ Complete Set

$$
\int u_{E^{\prime}}^{*}(x) u_{E^{\prime \prime}}(x) d x=\delta_{E^{\prime} E^{\prime \prime}}: \text { Orthogonality }
$$

$\therefore$ Coefficient를 계산할 수 있다.

$$
\int u_{E^{\prime}}^{*}(x) \psi(x) d x=\int u_{E^{\prime}}^{*}(x) \sum_{E} C_{E} u_{E}(x) d x=C_{E^{\prime}}
$$

Spectrum of eigenvalue

$$
\psi(x)=\underbrace{\sum_{n} C_{n} u_{E_{n}}(x)}_{\text {Bounded solution }}+\underbrace{\int C(E) u_{E}(x) d E}_{\text {Continuous solution }}
$$

$$
\begin{aligned}
& \int u_{E_{m}}^{*}(x) \cdot u_{E_{n}}(x) d x=\delta_{m, n} \\
& \int u_{E}^{*}(x) \cdot u_{E^{\prime}}(x) d x=\delta\left(E-E^{\prime}\right)
\end{aligned}
$$

Hermitian Conjugate operator

$$
+: \int[A \cdot \psi(x)]^{*} \cdot \psi(x) d x \equiv \int \psi^{*}(x) \cdot A^{+} \cdot \psi(x) d x
$$

Time dependence and Classical limit

$$
\begin{aligned}
&\langle A\rangle_{t}= \int \psi^{*}(x, t) \cdot A \cdot \psi(x, t) d x \\
& \begin{aligned}
& \frac{d\langle A\rangle_{t}}{d t}= \int \psi^{*}(x, t) \cdot \frac{\partial A}{\partial t} \cdot \psi(x, t) d x \\
&+\int \frac{\partial \psi^{*}(x, t)}{\partial t} \cdot A \cdot \psi(x, t) d x+\int \psi^{*}(x, t) \cdot A \cdot \frac{\partial \psi(x, t)}{\partial t} d x \\
&= \int \psi^{*}(x, t) \cdot \frac{\partial A}{\partial t} \cdot \psi(x, t) d x \\
&+\int \frac{H \cdot \psi^{*}(x, t)}{-i \hbar} \cdot A \cdot \psi(x, t) d x+\int \psi^{*}(x, t) \cdot A \cdot \frac{H \cdot \psi(x, t)}{i \hbar} d x \\
&=\left\langle\frac{\partial A}{\partial t}\right\rangle+\frac{1}{i \hbar} \int \psi^{*}(x, t) \cdot A \cdot H \cdot \psi(x, t)-H \cdot \psi^{*}(x, t) \cdot A \cdot \psi(x, t) d x \\
& \quad \quad H \cdot \psi^{*}(x, t) \cdot A \cdot \psi(x, t)=\left[H^{+} \cdot \psi(x, t)\right]^{*} \cdot A \cdot \psi(x, t) \\
&=\left\langle\frac{\partial A}{\partial t}\right\rangle^{H}+\frac{1}{i \hbar} \int \psi^{*}(x, t)^{*} \cdot H \cdot A \cdot \psi(x, t) \cdot[A, H] \cdot \psi(x, t) d x \\
&=\left\langle\frac{\partial A}{\partial t}\right\rangle+\frac{i}{\hbar}\langle[H, A]\rangle \\
& \\
& \therefore \frac{d\langle A\rangle_{t}}{d t}=\left\langle\frac{\partial A}{\partial t}\right\rangle_{t}+\frac{i}{\hbar}\langle[H, A]\rangle_{t}
\end{aligned}
\end{aligned}
$$

If $\frac{\partial A}{\partial t}=0$ and $[H, A]=0, \frac{d\langle A\rangle_{t}}{d t}=0$.
$\therefore$ potential이 time-invariant이면, 입자의 energy는 보존된다.
(Hamiltonian의 expectation value=energy)

$$
\begin{aligned}
\frac{d\langle p\rangle_{t}}{d t} & =\left\langle\frac{\partial p}{\partial t}\right\rangle_{t}+\frac{i}{\hbar}\langle[H, p]\rangle_{t}=0+\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}+V(x), p\right]\right\rangle_{t} \\
& =\frac{i}{\hbar}\langle[V(x), p]\rangle_{t}
\end{aligned}
$$

$\therefore$ potential이 constant이면, 입자의 momentum은 보존된다.

$$
\begin{aligned}
& \frac{d\langle x\rangle_{t}}{d t}=\frac{\langle p\rangle_{t}}{m} \\
& \frac{d\langle x\rangle_{t}}{d t}=\left\langle\frac{\partial x}{\partial t}\right\rangle_{t}+\frac{i}{\hbar}\langle[H, x]\rangle_{t}=0+\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}+V(x), x\right]\right\rangle_{t} \\
& =\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}, x\right]\right\rangle_{t}=\frac{i}{2 m \hbar}\left\langle\left[p^{2}, x\right]\right\rangle_{t} \\
& {\left[\left[p^{2}, x\right]=-2 i \hbar p\right.} \\
& {[A \cdot B, C]=A \cdot B \cdot C-C \cdot A \cdot B} \\
& =A \cdot B \cdot C-A \cdot C \cdot B+A \cdot C \cdot B-C \cdot A \cdot B \\
& =A \cdot[B, C]+[A, C] \cdot B \\
& =\frac{i}{2 m \hbar}\langle-2 i \hbar p\rangle_{t}=\frac{\langle p\rangle_{t}}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d\langle p\rangle_{t}}{d t}=-\left\langle\frac{d V}{d x}\right\rangle_{t} \\
& \frac{d\langle p\rangle_{t}}{d t}=\left\langle\frac{\partial p}{\partial t}\right\rangle_{t}+\frac{i}{\hbar}\langle[H, p]\rangle_{t}=0+\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}+V(x), p\right]\right\rangle_{t} \\
&\left.=\frac{i}{\hbar}\langle[V(x), p]\rangle_{t}=\frac{\hbar}{i} \cdot \frac{\partial}{\partial x}\right)_{\hbar} \\
&=\left\langle V(x) \cdot \frac{i}{\hbar} p-\frac{i}{\hbar} p \cdot V(x)\right\rangle_{t} \\
&=\left\langle V(x) \cdot \frac{\partial}{\partial x}-\frac{\partial V(x)}{\partial x}\right\rangle_{t} \\
&=-\left\langle\frac{\partial V(x)}{\partial x}\right\rangle_{t}
\end{aligned}
$$

