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‘Phase phenomena in probabilistic theories’

e By phase | mean the e’ appearing in front of a ket in a quantum state, e.g.

~|0) + €e*1)
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e By phase phenomena | mean things 8

like interference. \<up
LOW

e By probabilistic theories | mean something called the ‘convex framework for
probabilistic theories’ (a.k.a. generalised probabilistic theories).

— Quantum theory is a special case in this very wide framework.

— Essentially any experiment vyielding tables of data can be expressed in
this way, it is an operational approach. See e.g. Hardy: Quantum theory
from five reasonable axioms, quant-ph/0101012



Phase phenomena in probabilistic theories: motivation

The broad aim is to investigate phase phenomena in this wider framework for prob-
abilistic theories.

Motivations:

1. To understand phase in quantum theory more deeply: more operationally and
also which features of quantum theory are uniquely quantum, e.g. can other
theories do Shor's algorithm?

2. To think about post-quantum scenarios: suppose quantum theory doesn't
always hold, what is then possible? Phase seems to be at the heart of non-
classical phenomena so is a natural focal point.

To get started with this we need to have a good definition of ‘phase’ in the wider
framework.

For other treatments of phase beyond the quantum framework see also:

Sorkin ('94). Barnett, Dowker, Rideout ('07). Ududec, Barnum, Emerson ('11).
Coecke, Duncan ('11) Coecke, Edwards, Spekkens ('11).



Overview

1. Probabilistic theories, how to go beyond quantum.
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2. Defining phase in probabilistic theories .
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3. Phase in interferometers: how uncertainty enables
phase dynamics
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4. Particle exchange phase beyond quantum theory



1. Probabilistic theories
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Probabilistic theories: 1/5 “Everything is rea

There are measurement outcomes (effects), states and transformations.

e States are real vectors
(e.g. in quantum case may write p = > . §;g; where §; € R,g; = g
and take the vector of the ¢;'s as the state.)
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e Measurement outcomes are real vectors. (e.g. In quantum case one may
represent the POVM elements in this way)
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e Transformations are real matrices. i
e [he framework can be viewed as a 1
generalisation of the Bloch sphere
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Probabilistic theories 2/5: Understanding states

e Suppose there are some measurements in your experiment with some out-
comes. Repeating the experiment many times with the same settings gives
some relative frequencies for all outcomes. This list of real numbers can be
taken to be the state vector. Examples:

Coin side H

Another example

0.7
0.3

0.5
0.5

State 1

State 2

-1
M2 +1
-1

1
0
1
0

|

1 4
0
0
1

}

State 1

State 2

Relative
frequencies



Probabilistic theories 3/5: State spaces

e If we take these state vectors from the data table and draw them as real
vectors we get a bunch of vectors associated with a theory.

e We also allow for any probabilistic mixture (=convex combination) of the
states (hence the name convex framework).

e This gives a convex body called the state space.
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Probabilistic theories 4/5: Transformations of states
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Probabilistic theories 5/5: Beyond quantum

How can things get more exotic than quantum?

e We can have incompatible measurements without an uncertainty relation, e.g.
we could have states s.t. (X) = (Z) =1 — the cube state space.
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e Such a theory allows states (‘PR Boxes') that maximally violate the CHSH
Bell inequality, giving 4, whilst quantum respects Tsirelson’s bound of 2v/2.

e There is in my opinion no killer reason to rule such systems out, though they
have not been observed.



2. Phase in probabilistic theories



Phase in probabilistic theories (1/3)

How to define phase in probabilistic theories? Need operational definition.
e Recall quantum case: Phase
W) = rie]j) st reR
J
Phase arose from (i) choosing a basis, (ii) polar decomposing in that basis.

e Operationally speaking, changing the phases does not change the measure-
ment statistics for the measurement in basis |j). So step (i) becomes more
generally to pick a ‘frozen’ measurement.

e Moreover operationally speaking only relative phases matter, so we focus on
phase transformations relating states with different phases.

We define phase transformations associated with measurement ) as those
which leave the statistics of measurement M invariant for all states.



Phase in probabilistic theories (2/3)

Again: We define phase transformations associated with measurement

M as those which leave the statistics of measurement A invariant for all
states.

Example: Bloch sphere visualisation of phase transformation associated with Z
measurement: U = ¢ |0)0] + e*?1t[1)(1], [) = |0) + ei®|1).

Z=+1



Phase in probabilistic theories (3/3)

. _ <Z>=+1
Here is another example for a non-classical theory,

again for phase dynamics associated
with Z-measurement.

<X>=-1 < > <X>=+1

/ /

<7>=-1

We show that a theory has non-trivial phase dynamics associated with a max-
imal measurement if and only if the theory is non-classical.

(maximal measurement=measurement that deterministically distinguishes maximal
number of pure states in a single measurement; classical theory =theory where each
state has a unique decomposition into mixture of extremal states).



3. Phase in interferometers:
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Why interferometers implement phase dynamics
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The transformations on upper and lower branch respectively cannot make the system
jump between the branches

— they must leave the position statistics invariant

— they are phase transformations associated with the position measurement.



A stronger restriction: branch locality
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Physical actions on one region of space have no immediate effect on systems with
no probability of being detected in that region.

If the system has no probability of being detected where a transformation
is, then that transformation must leave the state of the system invariant.
We call this branch locality (because we are thinking about branches of an interfer-
ometer).

Mathematically, for 7;,, being a state where the particle has probability 1 of
being in the lower branch, and T),, a transformation localised to the upper branch:

Tfu,pylow — Viow,

similarly
ﬂowﬁup — ﬁup-



Branch locality, as visualised on Bloch sphere
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e Let the Z measurement be the binary position measurement

(Z = 41 means upper/lower branch).

e Thus Tj,, must leave any state >

on upper plane ((Z) = +1) invariant.

e \We see this is a heavy restriction on Tj,,
in the case of the cubic state space.
We show it implies Tiow = 1,
— no interferometer dynamicsl!.
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How uncertainty enables phase dynamics

e The qubit sphere however only touches
the plane at one point. This allows
the sphere to spin without
violating Branch locality.

The reason it only touches one point
Is essentially the uncertainty principle,
which implies that when Z is known
X and Y must be fully random.




4. Post-quantum particle exchange phase

For particles indistinguishable under a swap,

S_WAPWw) = e'?[12) '
¢'? € {+1 bosons, —1 fermions, other ¢?* — anyon}

What about in theories other than quantum
-is there still an exchange phase?



Making particle exchange phase observable

Superposition of pair being on left (|1)) or right (]0)).
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(10)[AB) +[1)[AB)) = \OHAB) +e[1)]AB) = (|0) + ¢”|1))c|AB)

This results in a phase transformation on the reference degree of freedom C,

U(0) = 0)0] + " [1)(1].

We may thus in quantum case associate a phase transformation of a qubit with
each quantum particle type.



What if systems are not quantum?

Pair either on left or right, this is associated with some binary observable.

e As the pair gets swapped the statistical of the binary position observable
cannot change

— the swap is a phase transformation associated with that observable.

e We build an argument along those lines without assuming the particles are
quantum, but assuming that they are indistinguishable, and conclude...



Particle exchange phase in post-quantum theories

We argue: The observable effect of exchanging two indistinguishable
particles is restricted to the control system being transformed by an
element of the phase group of a binary measurement. Hence the particle
types perceivable in a theory correspond to elements of this phase group.
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Summary and Outlook

Summary

1. We define phase transformations associated with measurement M
as those which leave the statistics of measurement M invariant for all states.

2. Uncertainty principle enables non-trivial interferometer phase dynamics
in quantum theory (enables escape from branch locality restriction).

3. The observable effect of exchanging two indistinguishable particles

is restricted to the control system being transformed by an element of the
phase group of a binary measurement.

Outlook

e Investigate post-quantum particles more.

e Role of phase in computing.
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More general statements

Definition 1 (Fully conditionally restricted). A state space is fully conditionally
restricted by a particular measurement if fixing any particular outcome of that mea-
surement to occur with certainty is sufficient to completely specify the state.

Definition 2 (Fully independent). A state space is fully independent of a given
measurement if fixing the outcome of that measurement only reduces the number
of degrees of freedom in the choice of state by the number of possible outcomes of
the measurement.

Theorem 1. If the state space is fully restricted conditional on the position mea-
surement, then any phase transformation can always be localised to a strict subset
of branches without violating Branch Locality. If the state space is instead fully
independent of the position measurement then no phase transformations (of form
T # 1) can be localised to any strict subset of branches without violating Branch
Locallity.



Particle exchange phase, extension to probabilistic theories

We take the input states to be products
wapc = Pap ® & (1)

where © 4p and @ are pure states.
For indistinguishable particles the post-exchange output state

PRt = UL ® S,
= s @ p&". (2)

The first line follows from noting that by the assumption of reversibility 9 is
pure and that Theorem 2 of [Hardy 2009] shows that such states are uncorrelatable.
The second line follows from the definition of indistinguishability which implies that
the marginal state on AB is invariant under the swap.



Particle exchange phase, extension to probabilistic theories

We thus have the exchange acting on the given input state type as

T(¢4pc) = (Lap @ Tc) (PAsc) (1)

for some T acting on C' exclusively.

Moreover as the two locations of the particle pairs are space-like separated, T is
in the phase group of that binary position measurement(!)

The observable effect of exchanging two indistinguishable particles is
restricted to the control system being transformed by an element of
the phase group of a binary measurement. Hence the particle types
perceivable® in a theory correspond to elements of this phase group.

*) There could be further restrictions.



