RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 57, NUMBER 2 1 JANUARY 1998-11

Quantum phase transitions in Josephson-junction chains
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We investigate the quantum phase transition in a one-dimensional chain of ultrasmall superconducting
grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed
into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the
interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-
Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found
that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctua-
tions; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.
[S0163-182608)51202-1

Quantum phase transitions, which are induced by quarnKosterlitz-ThoulesgBKT) type®° as the ratios of the Jo-
tum fluctuations at zero temperature, are distinguished frorsephson coupling energy to the charging energies are varied.
classical phase transitions in several important respects; thigterestingly, the junction capacitance here plays a role simi-
has attracted much attention in recent yéas.particular,  lar to that of dissipation and tends to suppress quantum fluc-
advances in fabrication techniques have made available afuations, enhancing superconductivity. However, the sup-
rays of ultrasmall superconducting grains, where the chargPression is not strong enough, and the insulator region still
ing energy dominates the Josephson coupling energy arl@mains even for arbitrarily large values of the junction ca-
accordingly, quantum fluctuation effects are of paramounPacitance. _ _
importance. Such Josephson-junction arrays have become a W€ consider a one-dimensional arrayhofultrasmall su-
prototype system displaying quantum phase transitions bége_rcondqctlng grains, each of Wh|c_h is _coupled to nearest-
tween the superconducting and the insulating phases. In tH¥ighboring grains via Josephson junctions. The system is
vicinity of the superconductor-insulator transition, the fluc-characterized by three energy scales, Josephson coupling en-

tuation effects depend crucially on the dimensionality of theerg)zf E, and charging energleioEeZ/ZCo and E,

system. In the case of two-dimensioriaD) arrays, rich ef- = €/2C1, whereC, is the self-capacitance of each grain and

fects of quantum fluctuations and resulting phase transition§1 iS the junction capacitance between nearest-neighboring

have been examined for a rather general form of the capac@irains. Itis described by the Hamiltonian

tance matrix, although there still exist unsettled issues in the

quantum regime, such as low-temperature reentrarfoc®n B

the other hand, one-dimensiondD) chains of Josephson - 2_Ko i1

junctions, where quantum fluctuations should be more im-

portant, have been studied mainly in the two limiting caseswhere the numbenm; of Cooper pairs and the phage of the

the self-charging model and the nearest-neighbor modeduperconducting order parameter at siteare quantum-

where only nearest neighboring charges intetddh the 1D mechanically conjugate variablds, ,¢;j1=16;;, and the en-

system with only self-capacitance, the role of dissipation orergy has been rescaled in units of the Josephson plasma fre-

the quantum phase transitfoas well as the persistence cur- quency fiw,=8BE(E;. Here we have introduce,

rent and voltagéhas also been considered. = JE,/8E, to describe the cas€,+0, and written the ca-
This paper investigates the quantum phase transitions ipacitance matrix in the form

general Josephson-junction chains withth the self- and

junction capacitancesAt zero temperature, the system is Cij=8;+M4(268 ;=8 -1~ 8 j+1)

transformed into a two-dimensional system of classical vor-

tices, where the junction capacitance introduces anisotropyhere \?=C;/C,. On the other hand, whe@y=0, it is

in the interaction between vortices. This leads to theconvenient to introduc&,=+E;/8E;. Note that\ can also

superconductor-insulator transition of the Berezinskii-be written in the formh=K, /K.

N N
nicalnj—Ko; cos i r1— ), (1)
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In the imaginary-time path-integral representation, the
partition function of the system reads

=13 [

7, Jo 2w

B—1
ex _Zo L[n,¢]} )
with the action
N 1 N
_: ) ) = o ln.
L[n,¢]—|; N 0r1.+ S .2, m,,Cij 0y -
N

—Ko E,: oSl b; 1,

3

where the temperature has been rescaled according to
fiwp,B— B. In EQ.(3), dy andd, denote the difference opera-
tor with respect to the positionand to the imaginary time,
respectively: aX¢j,TE qu +17 ¢j,7’ and ar¢j,TE ¢j,7’+1
—¢; ., and the(imaginary time slice 67 in the interval
[0,8] has been chosen to be uniiy units offiw,).** Our
main concern here is the quantum phase transition at zero
temperature, and accordingly, the lintit—~ as well as the
thermodynamic limiN— « is to be taken. We then apply the
Villain approximatiort? and integrate ou{e; .}, to obtain
the partition function in terms of an additional set of integer
variables{m; .} (as well agn; .}). The corresponding action
is given by

1 B 1
L[n,m]=2—KOi§j: ni’TCijlnj'T—i_Z_Kog ijYT, (4)

(2
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FIG. 1. Vortex interaction potentizﬂl along (a) the x axis and

(b) the 7 axis forA=0, 0.5, 1, 5, and 5@from the bottom to the
top).

with the Fourier transforms of the lattice Laplacia(z)
=2(1—cosz) and of the capacitanc€(q)=1+A?A(q).

where the two sets of integer variables satisfy the constraintlote that unles<,=0, the diagonal piec& ,=U(x=0,r
dym; .+d.n; ,=0. This constraint is conveniently taken into =0) becomes arbitrarily large d¢ and g are increased to

account by introducing an integer fiekl; - defined on the
space-time dual latticej(7)=(j+1/2,7+1/2) in such a
way thatm; .= —4d,A7 7 andn; .= d,Aj ;7. Henceforth we
will work on the dual lattice, and drop for simplicity the tilde
sign over site indices. The partition function is thus written
in terms of the unconstrained summation of £xp,L[A]}
overA, ;'s, with the action

1
L[A]= >

5

H,= —WKO_E vi,TLAJ(i — T,

ir,jo

infinity. Therefore the diagonal terma-FZKOUO(EJ-'Tvl-yr)2
should vanish in Eq(6), leaving the vorticity neutrality con-
dition: X; v; ,=0, and the Hamiltoniait6) may be written
in the form

®

1
-1 2 A
2K, 2} (0xA), ) Cij (O ) F 5 2 (@:Ai2)%  with O(x,7)=2a[Uy—U(x,7)]. The behavior of there-
duced vortex interactionJ(x,7) for several values o is

) ) ] ) displayed in Figs. 1 and 2, which manifests the logarithmic
Finally, the Poisson summation formula, which decom-pehavior at large length scales. In particular, the short-range
posesA, , into a real-valued field and a new integer field anisotropy prominent for large values ofdecreases rapidly

vj,,,» allows us to integrate out the real-valued fiédd ,.

with the distance. According to the renormalization group

This leads, apart from the spin-wave part, to the 2D systemRG) theory of the 2D Coulomb gas, such short-range anisot-

of classical vortices described by the Hamiltonian

ropy should not affect the universality class. Thus in the

spirit of the RG theory, the system is expected to exhibit

simple

Hv=2772KO_Z v U(i—j,7—o)vj,, (6)
irjo
where the vortex interaction is given by
27qu 27w i -
— _ 1 s qX—iwT

U(x,7) fo 7)o 27Te U(q,w),

~ A(q) )

U(gq,w)= .,—+A(w)1 (7)
C(a)

quaiigatively the same critical behavior as the 2D Coulomb
gas.

We now investigate the quantum phase transitions dis-

form U(q,0)=[A(q)+A(w)]?
~InyX?+ 72+ 2In2+ v, where y¢ is the Euler number.
Thus the Hamiltonian(8) describes precisely the isotropic
2D Coulomb gas, and the system undergoes a BKT

played by the Hamiltonian in Eq6). First we consider the
simplest case of,=0, which has been studied in Ref. 5. In
this self-charging limit, the interaction in Eq7) takes the

or U(x,7)
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also of interest to compare this case with the “nearest-
neighbor model” in Ref. 5: In the latter, only the nearest-
neighboring charges interact, which allows only bound vor-
tices. Consequently, the system is superconducting for all
finite values of the interaction strength.

We now turn to the more realistic case thats small but
nonzero, i.e.Co>C;. In this case, the vortex interactidh
is, to the order of\?, isotropic and has the asymptotic be-
havior U(x, 7) ~Inyx?+ 72+ &(\), wheree()) is the vortex
pair creation energyper vortey given by e(\)~(3/2)In2
+ye+(m— 1N+ O(M%). Hence the system again reduces to
the 2D Coulomb gas, with the vortex fugacity(\)=
exd —2mKge(N)] diminished by the factor
exf] —2mKo(m—1)A\%]. The standard RG theory of the BKT
transitiort®!? then predicts the transition poinKS(\)
slightly decreased frork§(0) by the amount

OK§ 27wK§(0)—4
= (1) —— N+ O\~ —LB\2
K§(0) 2wK§(0)—3
(12
7040 In this limit (A<<1), the Hamiltonian in Eq(1) can also

. be represented in terms of phase variables, which yields a 2D
FIG. 2. Plot of the vortex interactiod (x,7) for (@ A>=0.1and XY model with an additional interaction for nonzexo To
(b) \*=30. see this, we negle@(\*), and write the inverse capacitance

91012 . _ matrix in the form
transitior?"1%12 from the insulating phase to the supercon-

ducting one a¥ is increased. Cii'~(1-27\?) 8+ N2(5 j o1+ 8 j-1)- (13
We next consider the opposite lim@,=0, where the . ) 1 i
relevant(dimensionlesscoupling constant i, instead of ~ Note that without the off-diagonal term @;; ~, the first and
Ko. Accordingly, it is proper to us#w,= \/ﬁ inrescal- the second terms in the actid8) Woul_d jU_S'[ bse8 the Villain
ing the energy and the imaginary time, which in turn givesform of the cosine action along thedirection?® To exam-

T(q)=)"2+A(q) and U(q,0)=[1+A(w)] . As a re- ine the effects of the off-diagonal term, we use the identity

sult, we obtain the Hamiltonian in the form 2 1 =
exp{—(ﬁxn- )2|=—| dz
4K LT e T
HU=2772K1_2 vi N =], 7= 0)vj 4, 9 0 \/;
irjo
A
where, in sharp contrast to the previous self-charging case, Xexp{ —ZJ-Z,T— sz,ﬂ?xnj,r )
the vortex interactionJ (x,7)=2m[Uy—U(x,7)] is short- 0
ranged: which allows us to separate the charge variables at different
sites. The resulting action then takes the Villain form of the
0 2w 1— 5 ol 10 cosine action with the argument,¢; .+iVA%Kodyz; ,
(X, 7)~ E[ ~ ke ] (10 along ther direction. To the order ok?, the Gaussian inte-

gration overz; . leads to the effective phase Hamiltonian
for |7|>1. It is further of particular importance thét, in

general does not diverge, which implies that the diagonal 1
term in the Hamiltoniar(9) does not give the vorticity neu- Heil ¢1=—Ko| /—=+
, o . NEEY

trality condition. Thus(unbound free vortices become per-

vasive, and the system remains insulating for any nonzero _
value ofK,. This can also be understood in the charge rep- +¢09,¢; )]+ Ko [9,sindee; 12,
resentation, where the partition function reads b7

)\2

aKg | 2 [cost i)

.7

(14

ZG_l(q,w)], where the anisotropy has been removed by rescaling again
(11) the 7 axis by the factor (+\?) Y2+ \?/4K,. Note that Eq.
(14) reduces, fol =0, to the standard 2XY Hamiltonian.
with G(q,w)=A(q)[A(w)+1] 2. It follows from the ana- Here the junction capacitance not only enhances the effective
lytic continuation ofG(q,w) that the charge excitation has a coupling of theXY model but also introduces an additional
gapEy~%w,. Thus the long-range interacti(ﬂﬁ1 between interaction given by the second term in E34). Interest-
charges gives rise to the gap, resulting in an insulator. It igngly, the latter is very similar in form to the dissipation term

n 3
j,f = ﬁNq,m (q w)

1,7

IS exp{—i
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in the effective action, which is known to suppress quantum
fluctuations>” Therefore both effects contribute to the en- K
hancement of phase coherence, and it is concluded that the
junction capacitance in general tends to suppress quantum
fluctuations induced by the self-capacitance, thus reducing |
the insulator region. S
For larger values oh, Figs. 1 and &) show that the ‘
vortex creation energy(\) and the short-range behavior of

the interactionU(x,7) are highly anisotropic. Still at large

length/time scalesl(x,7) becomes isotropic and logarith-
mic, which can also be confirmed by the asymptotic expan-

sion for larger: 2/ K§ K,

27 1 127 FIG. 3. Schematic phase diagram of a Josephson-junction chain

AN+In 7+ +2In2—=In5
\/g YE

U(0,7)= 2 " 150 at zero temperature. As becomes largeKg decreases toward the
+O(17,1IN?). (15

limiting value 2/r.

perconductivity reflects the role of the junction capacitance:
may slightly alter the details of the RG flow, the qualitative 't €ndS t0 suppress the quantum fluctuations induced by the

features at large length scales are expected unaffected. Thaglf-capamtance, as manifested in the phase representation

it is concluded that for any value of finite the system 9'ven by Eq.(14).

undergoes the superconductor-insulator transition of the Unlike in two dimensions, where a few experimental
BKT universality class. studies of Josephson-junction arrays are available, most stud-

Figure 3 displays the schematic phase diagram ofthe ies in one dimension have been performed on tunnel-junction
K, plane. Although the precise phase boundary, i.e., the dearrays with negligible Josephson couplifgSuch a system
tailed behavior oKS(\), in general depends on the micro- porresponds to the lower left corner in Fig. 3, which is the
scopic length scales such as tfimaginary time slice 57, insulating regime. It would thus be of interest to perform
the universallarge-length scajebehavior should not be af- €xperiments on 1D arrays with appreciable Josephson cou-
fected. Thus the phase boundary between the supercondu@ling, which allows us to probe the superconducting regime,
ing and the insulating phases is concluded to belong to thand to study the resulting quantum phase transitions.

BKT universality class. As\(=K;/Ky) is increased, the

vortex creation energy also grows monotonically, resulting M.-S.C. is grateful to W. G. Choe, G. S. Jeon, and K.-H.
in the decrease oKG(\) toward the limiting value 2f.  Wagenblast for helpful discussions. This work was sup-
(Note that the value 2/ corresponds to the zero vortex ported in part by the BSRI Program, Ministry of Education
fugacity or the infinite vortex creation energihis lowering  of Korea, and by the Korea Science and Engineering Foun-
of the transition point and the resulting enhancement of sudation through the SRC Program.
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