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Quantum phase transitions in Josephson-junction chains
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We investigate the quantum phase transition in a one-dimensional chain of ultrasmall superconducting
grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed
into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the
interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-
Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found
that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctua-
tions; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.
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Quantum phase transitions, which are induced by qu
tum fluctuations at zero temperature, are distinguished f
classical phase transitions in several important respects;
has attracted much attention in recent years.1 In particular,
advances in fabrication techniques have made available
rays of ultrasmall superconducting grains, where the cha
ing energy dominates the Josephson coupling energy
accordingly, quantum fluctuation effects are of paramo
importance. Such Josephson-junction arrays have beco
prototype system displaying quantum phase transitions
tween the superconducting and the insulating phases. In
vicinity of the superconductor-insulator transition, the flu
tuation effects depend crucially on the dimensionality of
system. In the case of two-dimensional~2D! arrays, rich ef-
fects of quantum fluctuations and resulting phase transit
have been examined for a rather general form of the cap
tance matrix, although there still exist unsettled issues in
quantum regime, such as low-temperature reentrance.2–4 On
the other hand, one-dimensional~1D! chains of Josephso
junctions, where quantum fluctuations should be more
portant, have been studied mainly in the two limiting cas
the self-charging model and the nearest-neighbor mo
where only nearest neighboring charges interact.5,6 In the 1D
system with only self-capacitance, the role of dissipation
the quantum phase transition7 as well as the persistence cu
rent and voltage8 has also been considered.

This paper investigates the quantum phase transition
general Josephson-junction chains withboth the self- and
junction capacitances. At zero temperature, the system
transformed into a two-dimensional system of classical v
tices, where the junction capacitance introduces anisotr
in the interaction between vortices. This leads to
superconductor-insulator transition of the Berezinsk
570163-1829/98/57~2!/716~4!/$15.00
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Kosterlitz-Thouless~BKT! type,9,10 as the ratios of the Jo
sephson coupling energy to the charging energies are va
Interestingly, the junction capacitance here plays a role si
lar to that of dissipation and tends to suppress quantum fl
tuations, enhancing superconductivity. However, the s
pression is not strong enough, and the insulator region
remains even for arbitrarily large values of the junction c
pacitance.

We consider a one-dimensional array ofN ultrasmall su-
perconducting grains, each of which is coupled to near
neighboring grains via Josephson junctions. The system
characterized by three energy scales, Josephson couplin
ergy EJ and charging energiesE0[e2/2C0 and E1
[e2/2C1, whereC0 is the self-capacitance of each grain a
C1 is the junction capacitance between nearest-neighbo
grains. It is described by the Hamiltonian

H5
1

2K0
(

i , j 51

N

niCi j
21nj2K0(

i 51

N

cos~f i 112f i !, ~1!

where the numberni of Cooper pairs and the phasef i of the
superconducting order parameter at sitei are quantum-
mechanically conjugate variables,@ni ,f j #5 id i j , and the en-
ergy has been rescaled in units of the Josephson plasma
quency \vp[A8E0EJ. Here we have introducedK0

[AEJ/8E0 to describe the caseC0Þ0, and written the ca-
pacitance matrix in the form

Ci j 5d i j 1l2~2d i , j2d i , j 212d i , j 11!,

where l2[C1 /C0. On the other hand, whenC050, it is
convenient to introduceK1[AEJ/8E1. Note thatl can also
be written in the forml5K1 /K0.
R716 © 1998 The American Physical Society
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In the imaginary-time path-integral representation,
partition function of the system reads

Z5)
j ,t

(
nj ,t

E
0

2pdf j ,t

2p
expH 2 (

t50

b21

L@n,f#J ~2!

with the action

L@n,f#5 i(
j

N

nj ,t]tf j ,t1
1

2K0
(
i , j

N

ni ,tCi j
21nj ,t

2K0 (
j

N

cos]xf j ,t , ~3!

where the temperature has been rescaled accordin
\vpb→b. In Eq. ~3!, ]x and]t denote the difference opera
tor with respect to the positionx and to the imaginary timet,
respectively: ]xf j ,t[f j 11,t2f j ,t and ]tf j ,t[f j ,t11
2f j ,t , and the~imaginary! time slice dt in the interval
@0,b# has been chosen to be unity~in units of \vp).11 Our
main concern here is the quantum phase transition at
temperature, and accordingly, the limitb→` as well as the
thermodynamic limitN→` is to be taken. We then apply th
Villain approximation12 and integrate out$f j ,t%, to obtain
the partition function in terms of an additional set of integ
variables$mj ,t% ~as well as$nj ,t%). The corresponding action
is given by

L@n,m#5
1

2K0
(
i , j

ni ,tCi j
21nj ,t1

1

2K0
(

j
mj ,t

2 , ~4!

where the two sets of integer variables satisfy the constr
]xmj ,t1]tnj ,t50. This constraint is conveniently taken in
account by introducing an integer fieldA j̃ , t̃ defined on the
space-time dual lattice (j̃ , t̃ )[( j 11/2,t11/2) in such a
way thatmj ,t52]tA j̃ , t̃ and nj ,t5]xA j̃ , t̃ . Henceforth we
will work on the dual lattice, and drop for simplicity the tild
sign over site indices. The partition function is thus writt
in terms of the unconstrained summation of exp$2(tL@A#%
over Aj ,t’s, with the action

L@A#5
1

2K0
(
i , j

~]xAj ,t!Ci j
21~]xAj ,t!1

1

2K0
(

j
~]tAj ,t!

2.

~5!

Finally, the Poisson summation formula, which deco
posesAj ,t into a real-valued field and a new integer fie
v j ,t , allows us to integrate out the real-valued fieldAj ,t .
This leads, apart from the spin-wave part, to the 2D sys
of classical vortices described by the Hamiltonian

Hv52p2K0 (
i t, j s

v i ,tU~ i 2 j ,t2s!v j ,s , ~6!

where the vortex interaction is given by

U~x,t!5E
0

2p dq

2pE0

2pdv

2p
e1 iqx2 ivtŨ~q,v!,

Ũ~q,v!5FD~q!

C̃~q!
1D~v!G21

~7!
e
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with the Fourier transforms of the lattice LaplacianD(z)
52(12cosz) and of the capacitanceC̃(q)511l2D(q).
Note that unlessC050, the diagonal pieceU0[U(x50,t
50) becomes arbitrarily large asN and b are increased to
infinity. Therefore the diagonal term 2p2K0U0(( j ,tv j ,t)

2

should vanish in Eq.~6!, leaving the vorticity neutrality con-
dition: ( j ,tv j ,t50, and the Hamiltonian~6! may be written
in the form

Hv52pK0 (
i t, j s

v i ,tÛ~ i 2 j ,t2s!v j ,s ~8!

with Û(x,t)[2p@U02U(x,t)#. The behavior of the~re-
duced! vortex interactionÛ(x,t) for several values ofl is
displayed in Figs. 1 and 2, which manifests the logarithm
behavior at large length scales. In particular, the short-ra
anisotropy prominent for large values ofl decreases rapidly
with the distance. According to the renormalization gro
~RG! theory of the 2D Coulomb gas, such short-range anis
ropy should not affect the universality class. Thus in t
spirit of the RG theory, the system is expected to exh
qualitatively the same critical behavior as the 2D Coulom
gas.13

We now investigate the quantum phase transitions
played by the Hamiltonian in Eq.~6!. First we consider the
simplest case ofC150, which has been studied in Ref. 5. I
this self-charging limit, the interaction in Eq.~7! takes the
simple form Ũ(q,v)5@D(q)1D(v)#21 or Û(x,t)
' lnAx21t21 3

2 ln21gE , where gE is the Euler number.
Thus the Hamiltonian~8! describes precisely the isotrop
2D Coulomb gas, and the system undergoes a B

FIG. 1. Vortex interaction potentialÛ along ~a! the x axis and
~b! the t axis for l50, 0.5, 1, 5, and 50~from the bottom to the
top!.
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transition9,10,12 from the insulating phase to the superco
ducting one asK0 is increased.5

We next consider the opposite limitC050, where the
relevant~dimensionless! coupling constant isK1 instead of
K0. Accordingly, it is proper to use\vp[A8E1EJ in rescal-
ing the energy and the imaginary time, which in turn giv
C̃(q)5l221D(q) and Ũ(q,v)5@11D(v)#21. As a re-
sult, we obtain the Hamiltonian in the form

Hv52p2K1 (
i t, j s

v i ,tU~ i 2 j ,t2s!v j ,s , ~9!

where, in sharp contrast to the previous self-charging c
the vortex interactionÛ(x,t)[2p@U02U(x,t)# is short-
ranged:

Û~x,t!'
2p

A5
@12dx,0e

2utu# ~10!

for utu@1. It is further of particular importance thatU0 in
general does not diverge, which implies that the diago
term in the Hamiltonian~9! does not give the vorticity neu
trality condition. Thus~unbound! free vortices become per
vasive, and the system remains insulating for any nonz
value ofK1. This can also be understood in the charge r
resentation, where the partition function reads

Z5)
j ,t

(
nj ,t

expH 2
1

bN(
q,v

Un~q,v!U2G21~q,v!J ,

~11!

with G(q,v)5D(q)@D(v)11#21. It follows from the ana-
lytic continuation ofG(q,v) that the charge excitation has
gapEg;\vp . Thus the long-range interactionCi j

21 between
charges gives rise to the gap, resulting in an insulator. I

FIG. 2. Plot of the vortex interactionÛ(x,t) for ~a! l250.1 and
~b! l2530.
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also of interest to compare this case with the ‘‘neare
neighbor model’’ in Ref. 5: In the latter, only the neares
neighboring charges interact, which allows only bound v
tices. Consequently, the system is superconducting for
finite values of the interaction strength.

We now turn to the more realistic case thatl is small but
nonzero, i.e.,C0@C1. In this case, the vortex interactionÛ
is, to the order ofl2, isotropic and has the asymptotic b
havior Û(x,t)' lnAx21t21«(l), where«(l) is the vortex
pair creation energy~per vortex! given by «(l)'(3/2)ln2
1gE1(p21)l21O(l4). Hence the system again reduces
the 2D Coulomb gas, with the vortex fugacityy(l)[
exp@22pK0«(l)# diminished by the factor
exp@22pK0(p21)l2#. The standard RG theory of the BKT
transition10,12 then predicts the transition pointK0

c(l)
slightly decreased fromK0

c(0) by the amount

dK0
c

K0
c~0!

52~p21!
2pK0

c~0!24

2pK0
c~0!23

l21O~l4!'21.6l2.

~12!

In this limit (l!1), the Hamiltonian in Eq.~1! can also
be represented in terms of phase variables, which yields a
XY model with an additional interaction for nonzerol. To
see this, we neglectO(l4), and write the inverse capacitanc
matrix in the form

Ci j
21'~122l2!d i j 1l2~d i , j 111d i , j 21!. ~13!

Note that without the off-diagonal term inCi j
21 , the first and

the second terms in the action~3! would just be the Villain
form of the cosine action along thet direction.5,8 To exam-
ine the effects of the off-diagonal term, we use the ident

expF l2

4K0
~]xnj ,t!

2G5
1

Ap
E

2`

`

dzj ,t

3expF2zj ,t
2 2

l

AK0

zj ,t]xnj ,tG ,

which allows us to separate the charge variables at diffe
sites. The resulting action then takes the Villain form of t
cosine action with the argument]tf j ,t1 iAl2/K0]xzj ,t
along thet direction. To the order ofl2, the Gaussian inte-
gration overzj ,t leads to the effective phase Hamiltonian

Heff@f#52K0S 1

A12l2
1

l2

4K0
D(

j ,t
@cos~]xf j ,t!

1cos~]tf j ,t!#1l2K0(
j ,t

@]tsin]xf j ,t#
2,

~14!

where the anisotropy has been removed by rescaling a
the t axis by the factor (12l2)21/21l2/4K0. Note that Eq.
~14! reduces, forl50, to the standard 2DXY Hamiltonian.
Here the junction capacitance not only enhances the effec
coupling of theXY model but also introduces an addition
interaction given by the second term in Eq.~14!. Interest-
ingly, the latter is very similar in form to the dissipation ter
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in the effective action, which is known to suppress quant
fluctuations.3,7 Therefore both effects contribute to the e
hancement of phase coherence, and it is concluded tha
junction capacitance in general tends to suppress quan
fluctuations induced by the self-capacitance, thus reduc
the insulator region.

For larger values ofl, Figs. 1 and 2~b! show that the
vortex creation energy«(l) and the short-range behavior o
the interactionÛ(x,t) are highly anisotropic. Still at large
length/time scales,Û(x,t) becomes isotropic and logarith
mic, which can also be confirmed by the asymptotic exp
sion for larget:

Û~0,t!5
2p

A5
l1 ln t1H gE12 ln 22

1

2
ln 52

127

150J
1O~1/t,1/l2!. ~15!

Although the anisotropy in the short-range behavior ofÛ
may slightly alter the details of the RG flow, the qualitati
features at large length scales are expected unaffected.
it is concluded that for any value of finitel the system
undergoes the superconductor-insulator transition of
BKT universality class.

Figure 3 displays the schematic phase diagram on theK0-
K1 plane. Although the precise phase boundary, i.e., the
tailed behavior ofK0

c(l), in general depends on the micro
scopic length scales such as the~imaginary! time slicedt,
the universal~large-length scale! behavior should not be af
fected. Thus the phase boundary between the supercon
ing and the insulating phases is concluded to belong to
BKT universality class. Asl([K1 /K0) is increased, the
vortex creation energy also grows monotonically, result
in the decrease ofK0

c(l) toward the limiting value 2/p.
~Note that the value 2/p corresponds to the zero vorte
fugacity or the infinite vortex creation energy.! This lowering
of the transition point and the resulting enhancement of
ha
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perconductivity reflects the role of the junction capacitan
It tends to suppress the quantum fluctuations induced by
self-capacitance, as manifested in the phase represent
given by Eq.~14!.

Unlike in two dimensions, where a few experiment
studies of Josephson-junction arrays are available, most s
ies in one dimension have been performed on tunnel-junc
arrays with negligible Josephson coupling.14 Such a system
corresponds to the lower left corner in Fig. 3, which is t
insulating regime. It would thus be of interest to perfor
experiments on 1D arrays with appreciable Josephson
pling, which allows us to probe the superconducting regim
and to study the resulting quantum phase transitions.

M.-S.C. is grateful to W. G. Choe, G. S. Jeon, and K.-
Wagenblast for helpful discussions. This work was su
ported in part by the BSRI Program, Ministry of Educatio
of Korea, and by the Korea Science and Engineering Fo
dation through the SRC Program.

FIG. 3. Schematic phase diagram of a Josephson-junction c
at zero temperature. Asl becomes larger,K0

c decreases toward th
limiting value 2/p.
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