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General Introduction

Ultra-high-Q optical micro-resonators

2=

=
A compact .
silica laser i

nnnnnnnnnnn

shuffling

Nature 2002 Nature Physics 2007
I(AI ST Graduate School of

Nanoscience and Technology

Nature 2007




General Introgduction

Ultra-high-Q optical micro-resonators
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General Introgduction

Ultra-high-Q optical micro-resonators
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General Introgduction

Ultra-high-Q optical micro-resonators
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Partl Part2 Part3
Ultra-high-Q Ultra-low-loss Toward integrated
Wedge resonator Waveguide photonic circuits

Reference cavity

Record Q on a Si chip

Record loss Goal: implementation
Standard semiconductor Ij)l:]s;rce:::](iarence cavity d H O.f S|r_r:ple pholt_ct)rr:_lc I
fabrication process P Record lengt cireuits monotithicalsg
_ _ Longest resonator _ _ on a silicon chip
Precise size control on a chip Wide bandwidth

Miniaturization
Mass production
Robustness
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Previous high Q resonators

Optical Typical Size (diameter)

Q
CaF, 101
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Previous on-chip resonators

- Octave spanning
frequency comb on a chip

Appl ication S"'fO'F ___________________

Larger size <' - SBS laser

high Q resonators . .
;g Q : - RF signal generation

- Low thermal noise
reference cavity

- Optical Gyroscope
on a chip
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Resonator Diameter (mm)

Micro-toroids: m [1] D. K. Armani, et al, Nature, 2004

SiNx-based resonators: @ [2] Paul E. Barclay, et al, App. Phys. L., 89, 131108, 2006
A [3] Shah Hosseini, et al, IEEE/LEOS meeting, 2009
% [4] Daoxin Dal, et al, Optics Express, 2011
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Resonator Design

Previous SiO, wedge disk resonator
Vahala group
Phys. Rev. A, 74, 051802, 2006
Optical Q: Tens of Millions

To achieve higher Q
Removing discontinuity of the slope
(Foot-region) around the edge area
Smoother etched surface

Thicker oxide to put optical modes
Into the cavity
=>» To decrease interference with
surface roughness
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Fabrication proceaure

Thermal Photo-lithography
oxide growing

8~10um Thermal SiO, Thermal SiO,

Si substrate Si substrate Si substrate

BOE
etching

XeE2 PR removing

m Si undercut M & Cleaning m
- Si substrate - Si substrate
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Elimination of discontinuity on siade wall

: : A0l Photo-resist
Foot-region on side wall M g

Increasing additional etching time
=» decreasing foot-region size

Si
5 5 38.8kV X5.80K 6.88rm
| = Etching depth ]
i i 80 min :

e Foot region height| 3 | Photo-resist
~ \\\ A Si
f' =G .Gk X3.568K 8.574m
o>
o 130 min Photo-resist

40 60 80 100 Si
Etching Time (minutes) 30.@kV X3.55Kk '8.46unm
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Mechanically stable structure
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Deformation of silica disk structure 2| Lpngpeocassigne
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Origin: thermally grown SiO, @ 1000°C S| Lowo! 1o bucﬁe
> L
Agi1ica(0.5 X 107°) < Agj1ic0n(3 X 1070) 2 Easy to bQFREEak
O or break
Undercut .

Buckling patterns for various Si undercut (2 um thickness, 500 um diameter disk)

Applied Physics Letters, 102, 031113 (2013)
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Resonator surface roughness

SE  10-Jul-08 SE 02-Oct-08 WD14.6mm 15.0kV x15k

Surface roughness by AFM (RMS)
BOE etched surface: 0.54nm

Top surface: 0.15nm (intrinsic)
(~200nm correlation length for both)

SE 02-0ct-08 WD14.6mm 15.0kV x70k 500nm




O measurement result

Optical Q measurement
~1550nm signal wavelength
Lorentzian transmission spectrum measurement
Ring-down measurement for cavity life time

Max. Q: ~875M

| Transmission
| — Lorentzian Fit
.| © Interferometer

Sinusoidal Fit
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Optical Q vs disk diameter

SiO, Wedge resonator
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Resonator Free Spectral Range control

Resonator size controllability
Size deviation in the fabrication steps:

Original pattern on CAD file
<1pum (0.02 % for 6 mm disk)
Chrome pattern on the mask
<1pm
hoto-/esist pattern on the wafer

~ 0.5 um
(assuming 30 seconds
etching time uncertainty)

wedge oxide disk
No significant size change

Wedge oxide disk
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inverse fit
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Resonator diameter on CAD file (um)

Optics Express, vol. 20, p. 26337, 2012

~100 mins etching T for 25 um etching
( for 10 s.etching T)

=>» Additional precise size control
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SBS process in a cavity

Stimulated Brillouin Scattering process in the high Q cavity

Resonator III:D> Resonant mode g=a SBS Frequency Shift

size control FSR ST (~10.8GHz @ SiO,)
SBS-induced
gain & lasing
Resonant mode
FSR T:SR
g SBS gain Wedge Resonator
5 _ Bandwidth >> FSR controllability
ump SBS (Iam spectrum ~30MHz ~2 AMHz
Bandwidth

~10.8GHz —<— ~30MHz

v
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SEBS laseron a chip

Stimulated Brillouin Scattering laser

High Coherent on-chip laser

g 8L
SN | —Pumplaser |-

Threshold
60uW

1st Brillouin Stokes power (mW)
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Nature Photonics, vol. 6, p. 369, 2012
Optics Express, vol. 20, p. 20170, 2012
Optics Express, vol. 39, p. 287, 2014
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Applications - Frequency comb generation previous Work

Frequency comb generation in a micro cavity

P. Del Haye, et al., Nature 450, 1214, 2007
I. H. Agha, et al., Phys. Rev. A 76, 043837, 2007
P. Del Haye, et al., PRL 101, 053903, 2008
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our work

Applications - Frequency comb generation

Frequency comb generation
In a micro cavity

Generation of smaller FSR comb

Larger resonator in high Q 220 GHz
Lower threshold for pump power

n o Aefr

n, FSR Q

Precise control of FSR

P
33 GHz FSR, Pypeq = 200 MW

Power (dB)

0 L 1 1 L 1 1 Il 1110 | |
1300 1400 1500 1600 1700 1800 1900
Wavelength (nm)

Physical Review Letters, vol. 109, p. 233901, 2012
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Resonator dispersion control

Dispersion control by Wedge angle control

Adhesion control
between PR and thermal oxide

Wedge angle control

10°
A= 1400 nm
|
A= 1600 nm
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Wedge resonator Waveguide photonic circuits
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Motivation. Fiber like losses on a chip

On-chip waveguide Optical fiber
H ——F— H | +>
1uq_ 1mm J L 1m Jlkm 1,000km-€NIt" Ofyavegu'de
A. Loss: ~8-1dB/cm W Non-linear signal process
« Integrability e Supercontinuum generation
« Precise control of dimension  RFfiltering * Loss: 0.2dB/km
« Mass-productivity e High-stability microwave e High bandwidth
« Compact oscillators
\|* Shock resistance VAN Gyroscope
Y. . N (. ~ D
On-chip photonics Optical telecommunication

Branch #1

Branch #2 +

fayed Waveguide Grating
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Review: On Chip Waveguides

Towards longer length and smaller loss

Core Material Cladding Material Loss Length

. Q . ‘b} ri:
[1] Jared F. Bauters, et al, Optics Express, 19, p.3163, 2011

output

[2] Po Dong, et al, Optics Express, 18, p.14474, 2010

[3] K. Takada, et al, Electronics Letters, 32, p.1665, 1996
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Optical loss of on-chip waveguide

Waveguide loss estimated from wedge resonator Q

—a— 1. Wedge disk
—eo 2 R. Adar

. —4— 3. Bowers
—v— 4. SSMF

E
18]
)
o
72
o
-

Bending Diameter (mm)

[1] Estimated from Wedge disk Q measurement result

[2] R. Adar, et al, Journal of Lightwave Technology, vol. 12, P. 1369, 1994
[3] J. Bauters, et al, Optics Express vol. 19, p. 3163, 2011

[4] from SSMF 28 fiber measured by OBR
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From Weage Resonator to Spiral Waveguide

Cross-section

silicon

10.80kV X186 3880psm
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Loss measurement setup. Optical Backscatter Reflectometer

End-fire‘couMetUp

I(AI ST Graduate School of
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One Way Spiral Waveguide

Input Facef

— Original OBR Data
== Linear Fit

I(AI ST Graduate School of
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Waveguide loss: 0.06dB/m
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Hand-off Design. Adiabatic coupler

I(AI ST Graduate School of
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cascade Spiral <0.1dB/m loss over 2/m delay

S|0pe e Qriginal OBR Data
=== | inear Fitting

Waveg U|de IOSS 95% Confidence Interval

<0.1dB/m

Loss(dB)

Intersection
Hand-off loss

<0.1dB

Amplitude(dB/mm)

125U

Nature Communications, 3:867 doi:10.1038/ncomms1876, 2012



Applications - Optical data buffer

2.5 G bit/s data buffer (~170 bits in buffer)

Intensity
modulator

Polarization
controller

Microwave photonic filter

End-fire
Coupling setup

Spiral delay
waveguide

A

’G-axis

~ aligner

=
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Applications - Super continuum

Experimental result
Waveguide length: 3.5 m
Input : 180-fs pulses, 2.17 nJ coupled energy
(from optical parametric oscillator)
Output : 936 ~ 1888 nm (162 THz)

‘—“ Intensity Half-wave
Fiter ™  Plate
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Optics Letters, vol. 39, p. 1046, 2014
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Motivation: Compact Reference Cavities

NALE /7 s Fractional frequency instability:
photonics
- = "-;

'} 0, (1) *1x107'° @t =400ms

Laser linewidth <40 mHz at 1.5 pum

Dimesion:
20 cm x 10 cm (length x diameter)

Ultrastable silicon Fabry

Stable Laser Systems Jun Ye Group, JILA

T. Kessler, Nature Photonics 6, 687-692 (2012)

Can we make compact and integrable reference cavities on a chip?

I(AI ST Graduate School of
Nanoscience and Technology
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Stable frequency references are important in time keeping systems, communications, and many other areas.
And in stabilizing Laser frequency, reference cavity is a critical component.
These two are recently-developed state-of-the-art reference cavities.

Here, the most important figure of merit is stabilty ! // And Jun Ye group in JILA recently achieved Allan deviation of 10^-16  using this silicon-crystal cavity.
On the other hand, // there are needs for portable systems.
Of course, beating this number is not the goal for portable systems // but “size” becomes important.

Then, //can we make more compact (potentially chip-based) but stable enough reference cavities?
Instead of reducing the size of state-of-the-art reference cavities, maybe // we can use various WGM micro-resonators as reference cavities.

(Silicon-crystal cavity (h=210mm, r=50mm) itself has a size of 20 cm height and diameter of 10 cm. Somewhat bulky for portable systems.)






O
Motivation: Compact Reference Cavities

Due to the thermodynamic fluctuation of temperature,

) , a, : Thermo-refractive coefficient
<(Aw,,)> o kT . . . : : . .
— o = W'y, @ Thermo-refractive noise a; : Linear thermal expansion coefficient
- R Comnressihilitv of the resonator

<(Aw,,)*> :
— I~ = g ise 1

“ |
<(Aw,,)*> Mode volume
—— 1=~ = k, (

w

/

[1] Gorodetsky et ¢ )4).
[2] A. B. Matsko et al., J. Opt. Soc. Am. B 24, 1324 (2007).

Compact and integrable reference cavities on a chip !

Higher stability (less frequency fluctuation) ? Q.nax ~ 140 million

FSR~ 173 MHz

I(AIST Graduate School of 1.2 m |ength over 1 inch?
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Q versus resonator length

Maximum Q of 140 million obtained with a 1.2m long resonator
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Blue curve:
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Experimental setup

Fiber Laser

—— Optical signal

- Electrical signal

Fiber Laser

I(AI ST Graduate School of
Nanoscience and Technology

PDH Locking Loop 1

Spiral Resonator

Phase Noise
Fast PD Analyzer

Counter
ESA
PDH Locking Loop 2

Spiral resonator

PDH : Pound-Drever-Hall

LO : Local Oscillator

PD : Photo-Detector

EOM : Electro-Optic Modulator
ESA : Electrical Spectrum Analyzer
PID : PID controller

Optical signal
Electrical signal
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First, we measured electrical spectra with 200kHz span & 50 Hz RBW.

Obviously, the linewidth of lasers locked to 1.2m spiral resonators has been narrowed significantly // to approximately 100Hz.


Electrical Spectra (L =12 mspiral resonators )

Free-running

) RBW =50 Hz
—— 1.2 m sprials

Af =~ 100 Hz

jo g W*'II'I i

WWN

Relative frequency (kHz)
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First, we measured electrical spectra with 200kHz span & 50 Hz RBW.

Obviously, the linewidth of lasers locked to 1.2m spiral resonators has been narrowed significantly // to approximately 100Hz.


O
Phase noise (L =12 mspiral resonators )
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Next, phase noise is measured from 1Hz to 10MHz offset frequency.

Red & dark red spectra are phase noise of 1.2m spiral resonator case, and were measured on two different days. We could see it’s reproducible.
Compared to the free-running case, the phase noise has suppressed more than 26 dB on average.

We also compared phase noise improvement at 100Hz and 1kHz with 4 spiral resonators with different round-trip lengths. The improvement (due to the increased mode volume) is more drastic at 100Hz. We believe that this is because the larger mode volume gives better immunity to the photothermal noise transferred from the laser. 

And the effective Linewidth (calculated from these phase noise spectra) was approximately 100Hz, which corresponds to the electrical spectra measurement.
Since we measured a beatnote from two fiber lasers, if we assume the two lasers are identical, the linewidth of individual laser can be considered to be 75Hz.


Alan deviation measurement result
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Nature Communications, vol. 4, 2468, 2013
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Next, phase noise is measured from 1Hz to 10MHz offset frequency.

Red & dark red spectra are phase noise of 1.2m spiral resonator case, and were measured on two different days. We could see it’s reproducible.
Compared to the free-running case, the phase noise has suppressed more than 26 dB on average.

We also compared phase noise improvement at 100Hz and 1kHz with 4 spiral resonators with different round-trip lengths. The improvement (due to the increased mode volume) is more drastic at 100Hz. We believe that this is because the larger mode volume gives better immunity to the photothermal noise transferred from the laser. 

And the effective Linewidth (calculated from these phase noise spectra) was approximately 100Hz, which corresponds to the electrical spectra measurement.
Since we measured a beatnote from two fiber lasers, if we assume the two lasers are identical, the linewidth of individual laser can be considered to be 75Hz.
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