Ultra-high-Q resonator on a chip and its applications

Hansuek Lee

Nanophotonic Systems Lab. Graduate School of Nanoscience and Technology, KAIST

> with Vahala group at Caltech hQphotonics

Ultra-high-Q optical micro-resonators

Nature 2002

ΚΔΙST

Graduate School of Nanoscience and Technology

CG

Nature Physics 2007

V

threshold

Nature 2007

Ultra-high-Q optical micro-resonators

Nature 2006 107 atoms Pin 2 1 PR 0000000

Nature Photonics 2009

Science 2007

Ultra-high-Q optical micro-resonators

Disk world Resonators on a chip bring microphotonics closer

Tumour suppressors Unexpected role for retinghtastoma gene

Circadian clocks June for antisense RNA

String theory Hidden dimensions still in hiding

naturejobs physicsmeetsbiology

Nature 2003

Graduate School of Nanoscience and Technology

Cited over 1500 times

Part I

KAIST

Previous high Q resonators

	Optical Q	Typical Size (diameter)	on-chip	Integration on chip	Size controllability
CaF ₂ resonator	10 ¹¹		No	Not easy	Not easy
SiO ₂ micro-sphere	10 ¹⁰		No	Not easy	No
SiO ₂ micro-toroid	5x10 ⁸		Yes	Not easy	No
SiN _x - based resonator	5x10 ⁶		Yes	Easy	Yes

Previous on-chip resonators

Resonator Design

Previous SiO₂ wedge disk resonator

- Vahala group
 Phys. Rev. A, 74, 051802, 2006
- Optical Q: Tens of Millions
- To achieve higher Q
 - Removing discontinuity of the slope (Foot-region) around the edge area
 - Smoother etched surface
 - Thicker oxide to put optical modes into the cavity
 - ➔ To decrease interference with surface roughness

Fabrication procedure

Elimination of discontinuity on side wall

Nanoscience and Technology

12

Mechanically stable structure

Deformation of silica disk structure

• Origin: thermally grown SiO₂ @ 1000°C $\alpha_{silica}(0.5 \times 10^{-6}) < \alpha_{silicon}(3 \times 10^{-6})$

Buckling patterns for various Si undercut (2 µm thickness, 500 µm diameter disk)

Applied Physics Letters, 102, 031113 (2013)

Resonator surface roughness

Result by optimized process Result by conventional (w/o PR reflow) photo-lithography (PR reflowed for smoother surface) PR SiO₂ Si WD11.2mm 30.0kV x7. 5um SE10-Jul-08 SE 02-Oct-08

WD11.2mm 30.0kV x120k 250nm

 \mathbf{SE}

02-Oct-08

Left side of disk structure (not cross-section)

WD14.6mm 15.0kV x15k

Surface roughness by AFM (RMS) BOE etched surface: 0.54nm Top surface: 0.15nm (intrinsic) (~200nm correlation length for both)

 \mathbf{SE}

10-Jul-08

WD14.6mm 15.0kV x70k 500nm

Q measurement result

Optical Q measurement

- ~1550nm signal wavelength
- Lorentzian transmission spectrum measurement
- Ring-down measurement for cavity life time

Experimental Transmission Exponential Decay Fitting Normalized Transmission 0.8 Transmission FWHM ≈ 0.3MHz Q_==875M 0.6 Transmission 10 Lorentzian Fit 0.4 Interferometer 0 Sinusoidal Fit በጋ 10-2 Measured@ slightly overcoupled condition -0.2 0.4 0.6 0.2 0.8 0 2 6 Time (µs) MHz

KAIST

Graduate School of Nanoscience and Technology Max. Q: ~875M

Optical Q vs disk diameter

Resonator Free Spectral Range control

Resonator size controllability

Size deviation in the fabrication steps:

Original pattern on CAD file

< 1 µm (0.02 % for 6 mm disk)

Chrome pattern on the mask

< 1 µm

Photo-Resist pattern on the wafer

~ 0.5 µm (assuming 30 seconds etching time uncertainty)

BOE etched wedge oxide disk

No significant size change

Wedge oxide disk after XeF₂ undercut

Optics Express, vol. 20, p. 26337, 2012

~100 mins etching T for 25 μ m **lateral** etching (0.2 μ m diameter control for 10 s etching T)

→ Additional precise size control

SBS process in a cavity

Stimulated Brillouin Scattering process in the high Q cavity

SBS laser on a chip

Nature Photonics, vol. 6, p. 369, 2012 *Optics Express*, vol. 20, p. 20170, 2012 *Optics Express*, vol. 39, p. 287, 2014

Applications - Frequency comb generation previous work

Frequency comb generation in a micro cavity

ΚΔΙST

Graduate School of

Nanoscience and Technology

P. Del Haye, et al., Nature 450, 1214, 2007
I. H. Agha, et al., Phys. Rev. A 76, 043837, 2007
P. Del Haye, et al., PRL 101, 053903, 2008

T. J. Kippenberg, et al., Science 332, 555, 2011

Applications - Frequency comb generation

Frequency comb generation in a micro cavity

- Generation of smaller FSR comb
- Larger resonator in high Q
 - Lower threshold for pump power

 $P_{th} \propto \frac{n}{n_2} \frac{\omega}{FSR} \frac{A_{eff}}{Q_0^2}$

• Precise control of FSR

our work

Physical Review Letters, vol. 109, p. 233901, 2012

Resonator dispersion control

Dispersion control by Wedge angle control

Graduate School of Nanoscience and Technology ota

Geometric

1.8

.....

.....

1.6

......

2

Part II

Motivation: Fiber like losses on a chip

Review: On Chip Waveguides

Towards longer length and smaller loss

Core Material	Cladding Material	Loss	Length	Ref.
Si ₃ N ₄	SiO ₂	2.9dB/m	6m	[1]
Si	SiO ₂	27dB/m	0.64m	[2]
SiO ₂	Air	1.7dB/m	10m	[3]

[1] Jared F. Bauters, et al, Optics Express, 19, p.3163, 2011

[3] K. Takada, et al, Electronics Letters, 32, p.1665, 1996

Graduate School of Nanoscience and Technology

[2] Po Dong, et al, Optics Express, 18, p.14474, 2010

Optical loss of on-chip waveguide

Waveguide loss estimated from wedge resonator Q

[1] Estimated from Wedge disk Q measurement result

- [2] R. Adar, et al, Journal of Lightwave Technology, vol. 12, P. 1369, 1994
- [3] J. Bauters, et al, Optics Express vol. 19, p. 3163, 2011
- [4] from SSMF 28 fiber measured by OBR

From Wedge Resonator to Spiral Waveguide

Loss measurement setup: Optical Backscatter Reflectometer

One Way Spiral Waveguide

Hand-off Design: Adiabatic coupler

ΚΔΙΣΤ

Cascade Spiral <0.1dB/m loss over 27m delay

Applications - Optical data buffer

◆ 2.5 G bit/s data buffer (~170 bits in buffer)

Applications - Super continuum

Experimental result

- Waveguide length : 3.5 m
- Input : 180-fs pulses, 2.17 nJ coupled energy (from optical parametric oscillator)
- Output : 936 ~ 1888 nm (162 THz)

Optics Letters, vol. 39, p. 1046, 2014

Part II

Motivation: Compact Reference Cavities

Stable Laser Systems

Jun Ye Group, JILA

Fractional frequency instability: $\sigma_y(\tau) \approx 1 \times 10^{-16} @ \tau = 400 ms$

Laser linewidth < 40 mHz at 1.5 μm

Dimesion: 20 cm x 10 cm (length x diameter)

T. Kessler, Nature Photonics 6, 687–692 (2012)

Can we make *compact and integrable* reference cavities on a chip?

Motivation: Compact Reference Cavities

Due to the thermodynamic fluctuation of temperature,

Compact and integrable reference cavities on a chip !

Higher stability (less frequency fluctuation) ?

 $Q_{max} \sim 140 million$ FSR ~ 173 MHz

1.2 m length over 1 inch²

Oversus resonator length

Maximum Q of 140 million obtained with a 1.2m long resonator

KAIST

Experimental setup

PDH : Pound-Drever-Hall LO : Local Oscillator PD : Photo-Detector EOM : Electro-Optic Modulator ESA : Electrical Spectrum Analyzer PID : PID controller

KΔIST

Electrical Spectra (L = 1.2 m spiral resonators)

Phase noise (L = 1.2 m spiral resonators)

Nanoscience and Technology

Alan deviation measurement result

Nature Communications, vol. 4, 2468, 2013

