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Hanbury Brown and Twiss correlations of Cooper pairs in helical liquids
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We propose a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge channels of quantum
spin Hall insulators. The helical edge channels provide a well-defined beam of Cooper pairs and perfect Andreev
reflections from superconductors. This allows our setup to be identical in spirit to the original HBT experiment.
Interestingly, the cross correlation is always negative and provides no hint of the bosonic nature of Cooper pairs.
This counterintuitive result is attributed to the perfect Andreev reflection and the true beam splitter in the setup.
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I. INTRODUCTION

The Bose-Einstein condensation of constituent particles
results in superfluidity in bosonic systems [1]. Supercon-
ductivity in electronic systems is attributed to the pairing of
electrons into so-called Cooper pairs [2]. It is thus plausible
to expect Cooper pairs to bear some bosonic nature, and
to regard superconductivity as a condensation. Nevertheless,
mathematically, Cooper pairs are not pure bosons because the
pair creation and annihilation operators do not obey strictly
the boson commutation relations [2], and the bosonic nature
of Cooper pairs still remains controversial. Therefore, it will be
invaluable to examine the issue directly in experiments. Here
we propose a Hanbury Brown and Twiss (HBT) experiment
of Cooper pairs on the edge channels of quantum spin Hall
insulators [3,4], a recently discovered new state of matter.
Surprisingly [5], the cross correlation is always negative and
shows no hint of the bosonic nature of Cooper pairs once
they are emitted from the superconductor. Previously, theo-
retical [6–9] and experimental [10,11] works showed positive
or negative correlation depending on the system parameters.
Interestingly, the cross correlation has been predicted to be
always negative in a diffusive multiterminal superconductor-
normal-metal contacts [12].

A HBT effect is an intensity interference between two par-
tial beams. It was originally introduced in order to overcome
the technical difficulties in measuring the size of stars with
Michelson interferometers. After the pioneering experiment
by HBT in 1956 [13,14], it was soon realized that the effect
can determine quantum-statistical properties of a stream of
particles [15,16]: The intensity correlation is positive for
bosons (obeying Bose-Einstein statistics) while negative for
fermions (obeying Fermi-Dirac statistics) [17].

An ideal HBT experiment requires a well-defined beam
of particles and a tunable beam splitter (BS). For normal
electrons, an electron beam is achieved on the chiral edge
states of an integer quantum Hall insulator (IQHI), for which a
quantum point contact (QPC) serves as a beam splitter [18,19].
It does not work for Cooper pairs because the high magnetic
field required for IQHI breaks them.

A quantum spin Hall insulator (QSHI) is a prototype
example of topological insulators. Topological insulators are
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characterized by bulk excitation energy gap and gapless edge
modes, the latter being intimately connected to the topological
nature [3,20]. In QSHIs, the spin-orbit coupling gives the
edge modes a helical feature, spin-up (↑) electrons moving
to the right and spin-down (↓) electrons moving to the left,
and the time-reversal invariance prevents back scattering even
in the presence of disorder [3,20]. The helical edge states are
thus a Kramers pair and duplicate copies of a chiral edge
mode. Then it is clear that a QPC serves as a BS for helical
edge modes [21,22].

When a superconductor is put on top of helical edge modes,
the edge modes become superconducting due to the proximity
effect [23,24]. The edge modes beneath the superconductor
will be referred to as superconducting edge modes or simply
superconductors. A Cooper pair, itself being a pairing between
time-reversal counterparts, moves with no back scattering
across the (point) interface between superconductor and helical
edge modes. That is, the Andreev reflection is always perfect
even in the presence of interface barrier [25]. This is in sharp
contrast to usual normal-superconductor hybrid structures,
where in reality normal-electron reflection is unavoidable.
Therefore, the helical edge states provide a well-defined
and transparent channel for Cooper pairs [26,27]. Two-
dimensional QSHI has been observed recently in HgTe/CdTe
quantum wells [4] and also expected in InAs/GaSb/AlSb
type-II quantum wells [28].

Several HBT-type experiments of Cooper pairs have been
proposed before [6–9]. In their cases, however, a Y junction is
used instead of a true electron BS, and not only Andreev but
also normal-electron reflections are involved [8]. It is shown
below that these differences affect significantly the results. Our
setup is much closer in spirit to the original HBT experiment.
Another closely related work is Ref. [29]: Here the Cooper
pairs were injected to helical edge modes of QSHI through
direct tunneling from spin-singlet superconductors. Unlike in
our setup, the coupling between the helical edge modes and
the superconductor in their setup is weak. As pointed out
by the authors [29], most electrons are thus passing along
the edges without Andreev scattering and rare electrons do
undergo Andreev reflection but scatter to a different edge as
holes. Such a crossed Andreev reflection leads to an almost
perfect positive correlation [29].

Recently, the splitting of Cooper pairs has been demon-
strated experimentally [10,11]. However, in these experiments
the scattering of Cooper pairs themselves have been suppressed
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with Coulomb interaction. While the experiments are only
conductance measurements as they are, the cross correlation is
therefore expected to be manifestly positive in such setups [30].

II. NORMAL-ELECTRON CASE

We consider a stripe of QSHI. The helical edge states
at its boundary are described by a one-dimensional Dirac
Hamiltonian

H = �v
∑
�=1,2

∫
dx[ψ†

�↓(i∂x − μ)ψ�↓ − ψ
†
�↑(i∂x + μ)ψ�↑],

(1)

where ψ↑ (ψ↓) is the field operator of ↑ (↓) electrons, μ is
the chemical potential, and v is the propagation velocity. The
edge of a QSHI sample forms a closed loop and can never
be terminated in the middle. In Eq. (1) it has been assumed
that the lower (� = 1) and upper (� = 2) segment of the whole
edge are isolated from the rest by putting contact reservoirs
A, B, C, D, and other additional contacts (not shown) as in
Fig. 1(a).

Constricting the QSHI bar with side gates forms a QPC. The
↑ electron injected to the QPC from reservoir A, for example,
either moves on to reservoir C with probability amplitude t

or tunnels to the upper edge going out to reservoir D with
probability amplitude r . The QPC thus serves as a tunable BS
for electrons. The QPC is thus characterized completely by the
scattering matrix �⎡

⎢⎢⎢⎣

c′
1↓

c′
2↓

c′
1↑

c′
2↑

⎤
⎥⎥⎥⎦ = �

⎡
⎢⎢⎢⎣

c1↑
c2↑
c1↓
c2↓

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 t r

0 0 r t

t r 0 0

r t 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1↑
c2↑
c1↓
c2↓

⎤
⎥⎥⎥⎦ (2)
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FIG. 1. (Color online) The schematic setups for a HBT exper-
iment of Cooper pairs using edge states of QSHI. The light gray
represents the QSHI sample, the arrowed thick lines represent
the helical edge states. ↑ (↓) electrons move counterclockwise
(clockwise). The QPC formed by constriction with side gates serves
as an electron beam splitter. A HBT experiment setup (a) for normal
electrons and (b) for Cooper pairs. In (c), Cooper pairs are injected
from two superconductors.

relating the amplitudes c′
�σ (� = 1,2 and σ = ↑,↓) at the

output ports to c�σ at the input ports of QPC. We have
suppressed the energy (or momentum) dependence of c�σ for
notational simplicity.

We apply a bias voltage V to reservoir C, keeping A, B,
and D electrically grounded. With this bias configuration,
only ↓ electrons are injected from C along the lower edge.
The quantum statistical properties of the electron beam are
characterized by the correlation functions defined by

Sαβ =
∫ ∞

−∞
dt〈	Iα(t)	Iβ(0) + 	Iβ(0)	Iα(t)〉 (3)

with 	Iα(t) = Iα(t) − Īα , where Īα is the average current into
reservoir α. Given the scattering matrix in (2), the calculation
of Īα and Sαβ is a simple application of the Landauer-Büttiker
formalism [18]. We focus on the zero-temperature limit,
kBT � eV . In the present case, the average currents are given
by

ĪA = e2V

2π�
|t |2, ĪB = e2V

2π�
|r|2. (4)

Clearly the injected current Ī ≡ −ĪC flows either to A or B

(IA + IB = Ī ), but not to D (ĪD = 0). This partitioning at the
BS leads to the well-known results [18]

SAA = SBB = −SAB = 2eĪ |rt |2 (5)

for the current correlations, and its negative value is well
understood by their antibunching behavior [18]. For later
reference, we stress that the contact D is completely mute,
i.e., ID = 0 and SAD = SBD = SDD = 0.

III. HBT CORRELATIONS OF COOPER PAIRS

Let us now turn to the setup, Fig. 1(b), of our main concern.
We replace the normal contact C by a superconducting contact
S. A superconducting edge state is achieved by putting an
s-wave superconductor on top of the edge. Due to the proximity
effect, the edge states beneath the superconductor form a
superconducting state with an induced gap 	 = 	0e

−iϕ [24].
The Hamiltonian of the superconducting edge modes is then
given by [cf. (1)]

HS = �v

∫
dx[ψ†

1↓(i∂x − μ)ψ1↓ − ψ
†
1↑(i∂x + μ)ψ1↑

+	ψ
†
1↑ψ

†
1↓ + 	∗ψ1↓ψ1↑]. (6)

We apply bias voltage V to S and keep A,B, and D grounded,
effectively injecting Cooper pairs from S along the lower edge
channels. The injection of Cooper pairs can be equivalently
described by the Andreev reflection process, where, say,
an ↑ electron injected towards superconductor is reflected
by a ↓ hole away from superconductor, see Fig. 2. The
Andreev reflection amplitude is given by a = eiϕ−i arccos(E/	0)

for incident electrons of energy E (|E| < 	0). Note that due to
the time-reversal invariance the Andreev reflection probability
remains unity, |a|2 = 1, regardless of the imperfections at the
edge-superconductor interface [25]. This is in stark contrast
to the usual normal-superconductor interface, where interface
imperfections suppress Andreev reflections.
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Combining the Andreev reflections at the normal-superconductor interface and the normal scattering (2) at the QPC, one
obtains the total scattering matrix for electrons and holes:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c′
1↓

b′
1↓

c′
2↓

b′
2↓

c′
2↑

b′
2↑

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a∗|t |2 0 a∗r∗t r 0

a|t |2 0 art∗ 0 0 r∗

0 a∗rt∗ 0 a∗|r|2 t 0

ar∗t 0 a|r|2 0 0 t∗

r 0 t 0 0 0

0 r∗ 0 t∗ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1↑
b1↑
c2↑
b2↑
c2↓
b2↓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where b�σ and b′
�σ (� = 1,2 and σ = ↑,↓) are amplitudes of

the holes on the input and output ports. Here r∗ ≡ [r(−E)]∗,
t∗ ≡ [t(−E)]∗, and a∗ ≡ [a(−E)]∗ describe the scattering of
holes. We ignore weak energy dependence of r and t .

The average currents Iα and the current correlations Sαβ

(α,β = A,B,D) are calculated using the Landauer-Buttiker
formalism extended to the normal-superconductor hybrid
structure [31,32]. The currents

ĪA = 2e2V

2π�
|t |2, ĪB = 2e2V

2π�
|r|2, (8)

are twice larger than (4), demonstrating perfect Andreev
reflections at (or injection of Cooper pairs from) S. The
correlation functions are also given exactly in the same form
as (5),

SAA = SBB = −SAB = 2eĪ |rt |2, (9)

except that the total current Ī ≡ ĪA + ĪB is now twice larger.
Surprisingly, the cross correlation is negative. (As in the
normal case above, the contact D is mute; ID = 0 and
SAD = SBD = SDD = 0.)

This is surprising because the description in (7) in terms of
electrons and holes is equivalent to Cooper pairs injected from
S and scattered at QPC. Note that either (i) entire Cooper pairs
go to A or B [Figs. 3(a) and 3(c)], or (ii) constituent electrons in
each pair split up into A and B [Figs. 3(b) and 3(d)]. Naively,
one may expect a positive contribution from case (ii) with
one electron at each port A and B simultaneously. Assuming
(partial) bosonic nature of Cooper pairs, one may also expect
SAD > 0 in case (i).

The above expectation fails because it has ignored the
two-particle interference [33]. For example, the two process

µ
EF

E

c↑c↓ b↑b↓

kF k

(a) (b)

FIG. 2. (Color online) (a) Andreev reflection at the interface
between normal (left) and superconducting (right) helical edge
modes, where the ↑ electron is reflected as a ↓ hole. (b) The
energy-momentum relation of particles (cσ ) and holes (bσ ) with spin
σ = ↑,↓.

(A ↑ electron; B ↑ electron) → (A ↓ hole; B ↓ hole)
[Figs. 3(a) and 3(c)] and (A ↑ electron; B ↑ electron) → (B ↓
hole; A ↓ hole) [Figs. 3(b) and 3(d)] are not distinguishable
and interfere with each other. Due to the Fermi-Dirac statistics,
the amplitudes for these processes are opposite in sign, hence
giving negative cross correlation in (9).

There is another simple way to understand the negative
correlation. For example, ↑ electron from A undergoes either
Figs. 3(a) or 3(b). Since the perfect Andreev reflection at the
edge-superconductor interface is noiseless, it is nothing but
the partitioning of a single hole and thus gives a negative
contribution to SAB . Similarly, the partitioning into Figs. 3(c)
and 3(d) also give negative contributions.

We thus conclude that Cooper pairs bear no bosonic
characters at all, once they get out of the superconductor. It is
interesting to note that in recent experiments with quantum
dots [10,11] the processes Figs. 3(a) and 3(c) have been
suppressed due to Coulomb interactions. In this case, there
is no two-particle interference.

IV. BACK-SCATTERING EFFECT

The above conclusion appears contradictory to the previ-
ous theoretical works [6–9], where positive correlation was
predicted in certain range. As mentioned earlier, in these
works a Y junction is used instead of a true electron BS.

A

B

(c)(a)

(d)(b)

S

FIG. 3. (Color online) Elementary scattering processes in a Han-
bury Brown and Twiss experiment of Cooper pairs, described in
electron-hole picture. Blue (red) line represents the edge channels
of ↑ (↓) electrons (filled circle) or holes (empty circle). In Cooper
pair picture, (a) corresponds to Cooper pairs being injected from S,
scattered at the quantum point contact (QPC), and going entirely to
A. Analogously, in (c), Cooper pairs entirely go to B. In (c) and (d),
constituent electrons in a Cooper pair split up at the QPC.
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One crucial effect is the multiple reflections between the
junction and the superconductor. Further, not only Andreev
but also normal-electron reflections are involved. The latter
effect cannot be simulated in our system and is analyzed in the
supplementary material.

To simulate the former effects, let us now replace both C

and B by superconductors, S1 and S2, with phases ϕ1 and ϕ2,
respectively. We apply bias voltage V on both S1 and S2 and
keep A and D grounded. The scattering of electrons and holes
is governed by the scattering matrix (ignoring corrections of
order E2/	2

0 � 1)

⎡
⎢⎢⎢⎣

c′
1↓

b′
1↓

c′
2↑

b′
2↑

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 a∗
1 |t |2
z∗

w∗r
z∗ 0

a1|t |2
z

0 0 wr∗
z

wr
z

0 0 a∗
2 |t |2
z

0 w∗r∗
z∗

a2|t |2
z∗ 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1↑
b1↑
c2↓
b2↓

⎤
⎥⎥⎥⎦, (10)

where a1 = −eiϕ1+i2kF L1 , a2 = −eiϕ2−i2kF L2 , kF = μ/�v, and
L1 and L2 are the distances from the QPC to the superconduct-
ing contacts S1 and S2, respectively. The multiple reflections
between QPC and superconductors are manifested through
the factors z = 1 − |r|2eiθ and w = 1 − eiθ , where θ = (ϕ1 −
ϕ2) + 2kF (L1 + L2) is the phase accumulation during one
cycle of the multiple reflections. This immediately leads to
the resonance behavior of the average currents,

ĪA = ĪD = 2e2V

2π�

|t |4
1 + |r|4 − 2|r|2 cos θ

(11)

and the correlations

SAA = SDD = SAD = 2eĪ
|r|2(1 − cos θ )

1 + |r|4 − 2|r|2 cos θ
. (12)

For θ = 2πn with n an integer, the currents take maximum
and the noises vanish.

We note that the sign of the cross correlation SAD is
now positive, in contrast to (9), which is always negative.
This difference is ascribed to the multiple reflections between
QPC and superconductors. As noted by Baym [34], the
intensity correlation 〈I (t + τ )I (t)〉 is equivalent to the relative
probability to observe two particles at two points separated
by a distance vτ , where v is the flight velocity. If the HBT
experiment is done with a true BS as in Fig. 1(b), then the
intensity correlation is entirely due to the spatial distribution
and the quantum statistical property of the particles in the
beam itself. To the contrary, if the BS is replaced by a Y

junction [6–9] and multiple reflections occur between the
source and the junction, then the cross correlation is not
directly related to the spatial distribution in the beam alone but
affected significantly by the successive interactions with the
source. Therefore, the positive cross correlations in Refs. [6–9]
do not represent entirely the quantum statistical properties
of Cooper pairs after being emitted from a superconductor
(away by a distance larger than the superconducting coherence
length).
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APPENDIX: COMPARISON OF THE CHAOTIC
QUANTUM DOT AND THE HELICAL LIQUID

Previous theoretical works [8,35] considered a chaotic
quantum dot coupled to two normal leads 2 and 1 (correspond-
ing to A and B in our case) and one superconducting reservoir.
They found both positive and negative cross correlations in a
wide range of parameter values, and provide clear interpreta-
tions of the relevant microscopic processes. Therefore, it will
be useful for a deeper understanding of the physics behind
the cross correlation to compare more closely the processes in
their and our setup.

The crucial differences are (i) the multiple reflections
between the dot-superconductor interface and the Y junction
(dot-normal-metal interface), and (ii) the normal-electron
reflections (other than Andreev reflections). With the former
effect discussed in the main text of the paper, here we focus
on the latter effect.

Here we follow the scattering-matrix approach in Ref. [8],
which provides a clear picture of the two-particle interfer-
ence [33] and hence direct comparison of their system to ours.
A semiclassical analysis is given in Ref. [35], which is more
useful for interpretation in terms of partitioning noise.

We first discuss the case with the transparency �S of
the dot superconductor is perfect (�S = 1). The normal
and superconducting contacts supports N and M channels,
respectively.

For small 2N/M � 1, the dominant process is the (local)
Andreev reflections at the normal contact-dot interface, due to
the gap in the dot spectrum induced by the superconductor. For
finite (but small) 2N/M , there are finite probabilities of normal
reflections. The cross Andreev reflections (CARs) from one
normal reservoir to the other is still negligible; i.e., the terms
such as (Seh

12 ) can be ignored. In this limit, the cross correlation
is given by

P12

4e3V/2π�
≈ P eh

12 + P he
12

4e3V/2π�
≈ 2 Tr

[(
See

12

)†(
Seh

11

)(
Shh

21

)†(
She

22

)]
.

(A1)

This term arises from the two-particle interference of the two
processes (a) and (b) in Fig. 4: The two processes cannot be
distinguished and therefore the amplitudes (not probability)
should be summed. The interference gives positive cross
correlation [33] since it involves the exchange of electron
and hole, namely, different species of particles. Therefore, the
normal scattering processes (either electron or hole) in Fig. 4
is crucial to the positive cross correlation in this regime. In our
case, the process of Fig. 4 is prohibited because of the helical
(chiral) nature of the edge states.

In the limit of 2N/M  1, Ref. [8] obtained negative cross
correlation. In this limit, there are finite probabilities of the
CAR processes. According to Ref. [8], the main contributions
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(a) (b)2

1

FIG. 4. Equation (A1) corresponds to the interference of the two
processes (a) and (b). The interference is positive since it only involves
the exchange of electron and hole, i.e., different species of particles.

come from P ee
12 and P hh

12 , where P ee
12 is expressed explicitly as

− P ee
12

4e3V/2π�
= Tr

[(
See

11

)†(
Seh

11

)(
Seh

21

)†(
See

21

)

+ (
See

11

)†(
Seh

12

)(
Seh

22

)†(
See

21

)]
+ Tr

[(
See

12

)†(
Seh

11

)(
Seh

21

)†(
See

22

)
+ (

See
12

)†(
Seh

12

)(
Seh

22

)†(
See

22

)]
. (A2)

For example, the third term Tr[(See
12)†(Seh

11 )(Seh
21 )†(See

22)] corre-
sponds to the two-particle interference of the two processes,
Figs. 5(a) and 5(b). The interference is negative in this case,
because it involves the exchange of two electrons (after the
Andreev reflection). Again, both processes, Figs. 5(a) and 5(b),
include normal-electron reflections, which are forbidden in our
case. Other terms also involve similar normal-electron reflec-
tions. The above analysis shows that the system considered

(a) (b)2

1

FIG. 5. The third term in Eq. (A2), Tr(See
12)†(Seh

11 )(Seh
21 )†(See

22),
corresponds to the interference of the two processes (a) and (b). The
interference is negative since it involves electrons (i.e., the electrons
after the AR).

in Refs. [8,35] is in a clear distinction from ours, which
involves only Andreev reflections (scattering of Cooper pairs).

Let us now turn to the case with �S < 1. It turns out that for
�S < 1/2, the cross correlation becomes positive in the limit
2N/M�S  1. This is ascribed to the additional fluctuations
at the dot-superconductor interface due to imperfect Andreev
reflections, which are forbidden in our system due to the time-
reversal symmetry and makes another difference.

It will be useful to simulate this latter effect in our system
by applying a magnetic field, which effectively introduces a
mass gap into the helical liquid [24].

In conclusion, the close comparisons above reveal where
the discrepancy between their and our results arise. While in
our setup the cross correlation involves only the scattering of
Cooper pairs (or Andreev reflections), in Ref. [8] it involves
normal-electron reflections as well as Andreev reflections.
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[8] P. Samuelsson and M. Büttiker, Phys. Rev. Lett. 89, 046601

(2002).
[9] V. Bouchiat, N. Chtchelkatchev, D. Feinberg, G. B. Lesovik,

T. Martin, and J. Torres, Nanotechnology 14, 77 (2003).
[10] L. Hofstetter, S. Csonka, J. Nygard, and C. Schonenberger,

Nature (London) 461, 960 (2009).
[11] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos,

and C. Strunk, Phys. Rev. Lett. 104, 026801 (2010).
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[18] M. Büttiker, Phys. Rev. B 46, 12485 (1992).
[19] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin,

M. Holland, and C. Schönenberger, Science 284, 296 (1999).
[20] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[21] A. Ström and H. Johannesson, Phys. Rev. Lett. 102, 096806

(2009).
[22] C.-Y. Hou, E.-A. Kim, and C. Chamon, Phys. Rev. Lett. 102,

076602 (2009).
[23] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[24] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
[25] In the presence of strong (so as for Luttinger liquid parameter

to be less than 1/4) electron-electron interaction, the interface
barrier can suppress the Andreev reflection. This effect is
described elsewhere.

045137-5

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1007/s100510051010
http://dx.doi.org/10.1007/s100510051010
http://dx.doi.org/10.1007/s100510051010
http://dx.doi.org/10.1007/s100510051010
http://dx.doi.org/10.1103/PhysRevLett.89.046601
http://dx.doi.org/10.1103/PhysRevLett.89.046601
http://dx.doi.org/10.1103/PhysRevLett.89.046601
http://dx.doi.org/10.1103/PhysRevLett.89.046601
http://dx.doi.org/10.1088/0957-4484/14/1/318
http://dx.doi.org/10.1088/0957-4484/14/1/318
http://dx.doi.org/10.1088/0957-4484/14/1/318
http://dx.doi.org/10.1088/0957-4484/14/1/318
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1103/PhysRevB.63.081301
http://dx.doi.org/10.1103/PhysRevB.63.081301
http://dx.doi.org/10.1103/PhysRevB.63.081301
http://dx.doi.org/10.1103/PhysRevB.63.081301
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781449a0
http://dx.doi.org/10.1038/1781449a0
http://dx.doi.org/10.1038/1781449a0
http://dx.doi.org/10.1038/1781449a0
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1103/PhysRevB.46.12485
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.102.096806
http://dx.doi.org/10.1103/PhysRevLett.102.096806
http://dx.doi.org/10.1103/PhysRevLett.102.096806
http://dx.doi.org/10.1103/PhysRevLett.102.096806
http://dx.doi.org/10.1103/PhysRevLett.102.076602
http://dx.doi.org/10.1103/PhysRevLett.102.076602
http://dx.doi.org/10.1103/PhysRevLett.102.076602
http://dx.doi.org/10.1103/PhysRevLett.102.076602
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408


MAHN-SOO CHOI PHYSICAL REVIEW B 89, 045137 (2014)

[26] In helical edge modes, the spin↑ (spin↓) electron moves only
to the right (left). Cooper-pair injection is still possible: When a
Cooper pair is injected, it has a finite center-of-mass momentum,
say q, so that the momenta of two constituting electrons are
q + k and q − k. One should also recall the p-wave nature of the
pairing in helical edge modes originating from strong spin-orbit
coupling.

[27] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), sec. 3.
[28] C. Liu, T. L. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys.

Rev. Lett. 100, 236601 (2008).

[29] K. Sato, D. Loss, and Y. Tserkovnyak, Phys. Rev. Lett. 105,
226401 (2010).

[30] P. Recher and D. Loss, Phys. Rev. Lett. 91, 267003 (2003).
[31] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
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