Quantum Approximate Optimization Algorithm

 Part 2Eunok Bae
KIAS =

2023. 8. 17.

고려대학교 양자대학원 2023 Special Summer Internship

Review: QAOA

02

03

Variants of QAOA

04

Hands-on

Variational Quantum Algorithms

© What is VQAs?
\bigcirc VQE and QAOA

Quantum Approximate Optimization Algorithm

Level p-QAOA

1. Initialize the quantum processor in $|+\rangle^{\otimes N}$
2. Generate a variational wavefunction

$$
\left|\psi_{p}(\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}})\right\rangle=e^{-i \beta_{p} H_{B}} e^{-i \gamma_{p} H_{C}} \cdots e^{-i \beta_{1} H_{B}} e^{-i \gamma_{1} H_{C}}|+\rangle^{\otimes N}
$$

by applying the problem Hamiltonian H_{C} and a mixing Hamiltonian $H_{B}=\sum_{j=1}^{N} X_{j}$
3. Determine the expectation value

$$
F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})=\left\langle\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right| H_{C}\left|\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right\rangle
$$

4. Search for the optimal parameters

$$
\left(\vec{\gamma}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)=\arg \max _{\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}}} F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})
$$

by a classical computer

[L. Zhou et al., Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices, Phys. Rev. X 10, 021067, 2020]

$$
\text { Approximation ratio } \quad r=\frac{F_{p}\left(\vec{\gamma}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)}{C_{\max }}
$$

Variational Quantum Eigensolver (VQE)

Some variational ansatze - targeted at quantum simulation
\checkmark Hamiltonian Variational ansatz:

- Assume that: we want to find the ground state of $H=\sum_{i} H_{i}$
we can write $H=H_{B}+H_{C}$
$\uparrow \quad$ easy to prepare the ground state of H_{B}
- Then: prepare the ground state of H_{A}

For each of L layers l, implement $\prod_{k} e^{i t_{l k} H_{k}}$ for some times $t_{l k} \in \mathbb{R}$

- Intuition comes from the quantum adiabatic theorem:

As $L \rightarrow \infty$, this ansatz provably can represent the ground state of H.

Adiabatic

Quantum Computing

Adiabatic Quantum Computing

= Quantum Annealing

Figure 1. Schematic illustration of adiabatic quantum computing: by starting from the solution of a simple optimization problem (left) and slowly changing it to a complicated one (right), we are guaranteed by the adiabatic theorem to stay in the minimum during the whole evolution

Adiabatic Quantum Computing

Hamiltonian and time evolution
\checkmark Schrödinger equation:

- Time evolution of a quantum system with Hamiltonian H

$$
H|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

- For time-independent H :

$$
|\psi(t)\rangle=e^{-i H t / \hbar}|\psi(0)\rangle
$$

\checkmark Adiabatic theorem:
If the Hamiltonian of a quantum system in its ground state is perturbed slowly enough, the system remains in its ground state.

Adiabatic Quantum Computing

Hamiltonian and time evolution

- Consider the Hamiltonian $H=H_{B}+H_{C}$
- Time evolution operator

$$
U(t)=e^{-\frac{i H t}{\hbar}}=e^{-\frac{i\left(H_{B}+H_{C}\right) t}{\hbar}}
$$

- For commuting matrices H_{B}, H_{C} :

$$
e^{H_{B}+H_{C}}=e^{H_{B}} e^{H_{C}}
$$

\checkmark Trotter Suzuki Formula:

$$
e^{-i\left(H_{B}+H_{C}\right) t} \approx\left(e^{-i H_{B} t / r} e^{-i H_{C} t / r}\right)^{r}
$$

Adiabatic Quantum Computing

Adiabatic path or Annealing schedule
\checkmark Adiabatic path or Annealing schedule:

$$
H(t)=\frac{t}{T} H_{C}+\left(1-\frac{t}{T}\right) H_{B} \quad t \in[0, T]
$$

\checkmark Discretizing AQC and QAOA:

$$
U(T)=U(T, 0)=U\left(T,\left|\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right\rangle=e^{-i \beta_{p} H_{B}} e^{-i \gamma_{p} H_{C}} \cdots e^{-i \beta_{1} H_{B}} e^{-i \gamma_{1} H_{C}}|+\rangle^{\otimes N}\right.
$$

$$
\approx \prod_{j=1}^{p} e^{-i H(j \Delta t) \Delta t}=\prod_{j=1}^{p} e^{-i\left(\frac{\mathrm{j} \Delta t}{T} H_{C}+\left(1-\frac{\mathrm{j} \Delta t}{T}\right) H_{B}\right) \Delta t} \approx \prod_{j=1}^{p} e^{-\left(\frac{j \Delta t}{T}\right) \Delta t t} C_{V} e^{\left.-\left(1-\frac{\mathrm{j} \Delta t}{T}\right) \Delta t\right) H_{B}}
$$

Variants of QAOA

Quantum Physics

[Submitted on 15 Jun 2023 (v1), last revised 26 Jun 2023 (this version, v2)]

A Review on Quantum Approximate Optimization Algorithm and its Variants

Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal Pandya, Alessandro Summer
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide. Keywords: Quantum Approximate Optimization Algorithm (QAOA), Variational Quantum Algorithms (VQAs), Quantum Optimization, Combinatorial Optimization Problems, NISQ Algorithms

Comments:	67 pages, 9 figures, 9 tables; version 2 -- added more discussions and practical guides
Subjects:	Quantum Physics (quant-ph)
Cite as:	arXiv:2306.09198 [quant-ph]
	(or arXiv:2306.09198v2 [quant-ph] for this version)
	https://doi.org/10.48550/arXiv.2306.09198

Submission history

From: Rui-Hao Li [view email]
[v1] Thu, 15 Jun 2023 15:28:12 UTC ($5,133 \mathrm{~KB}$)
[v2] Mon, 26 Jun 2023 19:41:01 UTC (5,922 KB)

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size

$M_{2,4}=-0.4$

$$
z_{4}=-z_{2}
$$

solve

[S. Bravyi et al., Obstacles to State Preparation and Variational Optimization from Symmetry Protection, Phys. Rev. Lett. 125, 260505 (2019)]

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size
\checkmark Warm starting QAOA (2021) \qquad

Figure 2: Quantum circuit for WS-QAOA. The first \hat{R}_{Y} rotations prepare the initial state $\left|\phi^{*}\right\rangle$. The mixer operator, i.e. $\hat{R}_{Y}\left(\theta_{i}\right) \hat{R}_{Z}\left(-2 \beta_{k}\right) \hat{R}_{Y}\left(-\theta_{i}\right)$, is applied after the time-evolved problem Hamiltonian \hat{H}_{C}.

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size
\checkmark Warm starting QAOA (2021)
\checkmark Feedback-based ALgorithm for Qauntum OptimizatioN (FALQON) (2021)

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size
\checkmark Warm starting QAOA (2021)
$\checkmark \quad$ FALQON (2021)
\checkmark Adaptive QAOA (2022) \longrightarrow

- different mixer Hamiltonian at each level

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size
$\checkmark \quad$ Warm starting QAOA (2021)
$\checkmark \quad$ FALQON (2021)
$\checkmark \quad$ Adaptive QAOA (2022)

- shortcuts to adiabaticity

Variants of QAOA

\checkmark Recursive QAOA (2019) : iteratively reduces the problem size
\checkmark Warm starting QAOA (2021)
\checkmark Adaptive QAOA (2022)

Variants of QAOA

FALQON

[K. Blekos et al., A Review on Quantum Approximate Optimization Algorithm and its Variants, arXiv:2306.09198 (2023)]

Implementing QAOA Hands-on

Quantum Approximate Optimization Algorithm

Level p-QAOA

1. Initialize the quantum processor in $|+\rangle^{\otimes N}$
2. Generate a variational wavefunction

$$
\left|\psi_{p}(\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}})\right\rangle=e^{-i \beta_{p} H_{B}} e^{-i \gamma_{p} H_{C}} \cdots e^{-i \beta_{1} H_{B}} e^{-i \gamma_{1} H_{C}}|+\rangle^{\otimes N}
$$

by applying the problem Hamiltonian H_{C} and a mixing Hamiltonian $H_{B}=\sum_{j=1}^{N} X_{j}$
3. Determine the expectation value

$$
F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})=\left\langle\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right| H_{C}\left|\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right\rangle
$$

4. Search for the optimal parameters

$$
\left(\overrightarrow{\boldsymbol{\gamma}}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)=\arg \max _{\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}}} F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})
$$

by a classical computer

[L. Zhou et al., Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices, Phys. Rev. X 10, 021067, 2020]

$$
\text { Approximation ratio } \quad r=\frac{F_{p}\left(\vec{\gamma}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)}{C_{\max }}
$$

Quantum Approximate Optimization Algorithm

Level p-QAOA

1. Initialize the quantum processor in $|+\rangle^{\otimes N}$
2. Generate a variational wavefunction

$$
\left|\psi_{p}(\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}})\right\rangle=e^{-i \beta_{p} H_{B}} e^{-i \gamma_{p} H_{C}} \cdots e^{-i \beta_{1} H_{B}} e^{-i \gamma_{1} H_{C}}|+\rangle^{\otimes N}
$$

by applying the problem Hamiltonian H_{C} and a mixing Hamiltonian $H_{B}=\sum_{j=1}^{N} X_{j}$
3. Determine the expectation value

$$
F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})=\left\langle\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right| H_{C}\left|\psi_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})\right\rangle
$$

4. Search for the optimal parameters

$$
\left(\overrightarrow{\boldsymbol{\gamma}}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)=\arg \max _{\vec{\gamma}, \overrightarrow{\boldsymbol{\beta}}} F_{p}(\overrightarrow{\boldsymbol{\gamma}}, \overrightarrow{\boldsymbol{\beta}})
$$

by a classical computer

[L. Zhou et al., Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices, Phys. Rev. X 10, 021067, 2020]

$$
\text { Approximation ratio } \quad r=\frac{F_{p}\left(\vec{\gamma}^{*}, \overrightarrow{\boldsymbol{\beta}}^{*}\right)}{C_{\max }}
$$

Implementing QAOA

Pauli operators X, Y, and Z
Pauli operators (single qubit operations)

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli X

Pauli Y

Pauli Z

Implen

Pauli operat

Single-Qubit Gates

$$
|\psi\rangle=\cos (\theta / 2)|0\rangle+e^{i \phi} \sin (\theta / 2)|1\rangle=\binom{\cos (\theta / 2)}{e^{i \phi} \sin (\theta / 2)}
$$

Rotation matrices:

$$
\begin{aligned}
& \hat{R}_{\mathrm{x}}(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-\mathrm{i} \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right) \\
& \hat{R}_{\mathrm{y}}(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right) \\
& \hat{R}_{\mathrm{z}}(\theta)=\left(\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right)
\end{aligned}
$$

- The rotation matrices are a linear combination of the Pauli operators: $\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}$ and the identity operator (\hat{I}).

$$
\hat{R}_{\mathrm{x}}(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)=\cos \frac{\theta}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-i \sin \frac{\theta}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\cos \frac{\theta}{2} \hat{l}-i \sin \frac{\theta}{2} \chi x=e^{-i \frac{\theta}{2} X}
$$

$$
\hat{R}_{y}(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)=\cos \frac{\theta}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-i \sin \frac{\theta}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\cos \frac{\theta}{2} \hat{l}-i \sin \frac{\theta}{2} \Phi_{y} \quad=e^{-i \frac{\theta}{2} Y}
$$

$$
\begin{aligned}
\hat{R}_{\mathrm{z}}(\theta)=\left(\begin{array}{cc}
e^{-\frac{i \theta}{2}} & 0 \\
0 & e^{\frac{i \theta}{2}}
\end{array}\right) & =\left(\begin{array}{cc}
\cos \frac{\theta}{2}-i \sin \frac{\theta}{2} & 0 \\
0 & \cos \frac{\theta}{2}+i \sin \frac{\theta}{2}
\end{array}\right) \\
& =\cos \frac{\theta}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-i \sin \frac{\theta}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\cos \frac{\theta}{2} \hat{I}-i \sin \frac{\theta}{2} \text { Z }
\end{aligned}=e^{-i \frac{\theta}{2} Z}
$$

Implementing QAOA

The circuits of H_{C} and H_{B}

The Mixing Unitary

Implementing QAOA

The circuits of H_{C} and H_{B}

$$
H_{B}=\sum_{j=1}^{N} X_{j} \quad U(\beta)=e^{-i \beta H_{B}}
$$

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import Aer, execute
from qiskit.circuit import Parameter
\# Adjacency is essentially a matrix which tells you which nodes are非 connected. This matrix is given as a sparse matrix, so we need to非 convert it to a dense matrix
adjacency $=$ nx.adjacency_matrix(G).todense()
nqubits $=4$
beta $=$ Parameter("\$
beta\$")
qc_mix = QuantumCircuit(nqubits)
for i in range(0, nqubits)
qc_mix.rx(2 * beta, i)
qc_mix.draw()
try

$$
\begin{aligned}
& q_{0}-R_{2_{x} \beta_{1}}^{R_{2}} \\
& q_{1}-\mathrm{R}_{2 \times \beta}- \\
& q_{2}-{\underset{2}{2} \times \beta_{1}}_{R_{X}} \\
& q_{3}-{ }_{2^{2} \cdot \beta}^{R_{x}}-
\end{aligned}
$$

Implementing QAOA

The circuits of H_{C} and H_{B}

Pauli matrices

$$
\begin{gathered}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
Z|0\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=|0\rangle, \quad Z|1\rangle=-|1\rangle
\end{gathered}
$$

Note that

$$
e^{A}|v\rangle=e^{\lambda}|v\rangle \quad \text { if } A|v\rangle=\lambda|v\rangle
$$

Since $Z|x\rangle=(-1)^{x}|x\rangle$,

$$
e^{-i \gamma Z_{i} Z_{j}}\left|x_{i} x_{j}\right\rangle=e^{-i \gamma\left(x_{i} \oplus x_{j}\right)}\left|x_{i} x_{j}\right\rangle
$$

Implementing QAOA

The circuits of H_{C} and H_{B}

$$
H_{C}=\frac{1}{2} \sum_{\{i, j\} \in E}\left(1-Z_{i} Z_{j}\right) \quad U(\gamma)=e^{-i \gamma H_{C}}
$$

The Problem Unitary

```
gamma = Parameter("$\\gamma$")
qc_p = QuantumCircuit(nqubits)
for pair in list(G.edges()): 非 pairs of nodes
    qc_p.rzz(2 * gamma, pair[0], pair[1])
    qc_p.barrier()
qc_p.decompose().draw()
```

try

Thank you!

eobae@kias.re.kr

