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Solid-state implementation of quantum teleportation and quantum dense coding
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We consider three generic types of coupling between two quantum bits~qubits!, which are typically found
in solid-state qubits proposed in the literature. We show that proper choice of non-local Bell states can simplify
significantly the implementation of quantum teleportation and quantum dense coding.
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Entanglement is one of the distinguishing properties
quantum mechanics, and plays a central role in quantum
formation processing. Two examples are quantum telepo
tion @1# and quantum dense coding@2#. While both of them
have already been demonstrated experimentally u
polarization-entangled photon pairs@3,4#, neither has been
realized in solid-state quantum bits~qubits!. The latter is
important when one wants eventually to perform large-sc
information processing.

A severe problem to overcome is decoherence since
influence of the environment is stronger in solid-state
vices, especially when it comes to quantum entanglem
Experiments have confirmed that coherence can be m
tained long enough to perform single-qubit operations
Josephson qubits@5,6# and quantum-dot qubits@7#. Schemes
to prepare an entangled state and detect it on quantum
have been proposed theoretically@8,9#. Nevertheless, it is
still challenging to demonstrate experimentally two-qu
unitary gate operations, such as quantum dense co
~QDC! and quantum teleportation~QT!, on solid-state qubits
Given the limit of the decoherence time, it is very necess
to reduce the number of required operations. A reduced n
ber of steps also helps to avoid errors from imperfect g
operations, which are inevitable in real experimental circu
stances.

The schemes for quantum teleportation and quan
dense coding have been well established in terms of uni
sal gates and, in principle, can apply to any qubits. Howe
given a specific form of Hamiltonian, in particular couplin
between two qubits, actual realizations can be quite com
cated. In fact, even in Refs.@3,4#, the success probability o
teleportation and dense coding was less than 1, becaus
the peculiar properties of the Bell-state analyzer for pho
pairs. In the present work, we consider a few already p
posed solid-state qubits~or simplified versions of them! and
show that particular choices of Bell states~the orthogonal
basis for a two-qubit system; see below! allow us to reduce
significantly the number of steps required to perform qu
tum teleportation and quantum dense coding.

Quantum dense coding and quantum teleportation. To es-
tablish the notation, we first briefly review the quantu
dense coding and quantum teleportation schemes. Qua
dense coding uses a preshared entangled pair of qubi
transmit two bits of classical information by sending on
one qubit. It consists of three steps.~i! An entangled state o
two qubits is prepared and shared between the two par
say, Alice~A! and Bob (B). It can be one of the four maxi
mally entangled Bell states
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uf6&5
1

A2
~ u00&6u11&), ~1a!

uc6&5
1

A2
~ u01&6u10&), ~1b!

whereu i j &5u i &A^ u j &B with i , j 50,1, andu0& and u1& com-
pose an orthogonal basis of each qubit.~ii ! When Bob wants
to send a message to Alice, he encodes his message o
qubit of the preshared entangled pair by performing one
the four unitary operations1, s x, sy, ands z ~two bits of
information!. Each of these operations transforms the e
tangled state uniquely to one of the Bell states~1!; e.g., if the
preshared entangled state wasuf1&, then 1Buf1&
5uf1&, s B

x uf1&5uc1&, sB
y uf1&5 i uc2&, and s B

z uf1&
5uf2&. Bob then sends his qubit to Alice.~iii ! Finally, Alice
~the receiver! performs anonlocalBell measurement to se
in which of the four Bell states the two qubits are. Th
reveals precisely which operation Bob performed.

Quantum teleportation utilizes a classical channel
transmit quantum information. It also consists of three ste
~i! Alice and Bob prepare and share an entangled pair,
uf1&AB in Eq. ~1!. ~ii ! Bob takes his qubit~B! of the pair and
puts it together with a third qubitC in the unknown state
uc&C5au0&C1bu1&C that he wants to ‘‘teleport’’ to Alice.
Up to this point, the total wave functionuC&ABC5uf1&AB
^ uc&C of the three qubits can be recast as

uC&ABC5
1

2
uc&A^ uf1&BC1

1

2
$sxuc&A% ^ uc1&BC

1
1

2
$2 isyuc&A% ^ uc2&BC

1
1

2
$szuc&A% ^ uf2&BC . ~2!

Bob carries out a Bell measurement on the two qubitsB and
C and informs Alice of his measurement result~two bits of
classical information! through a classical channel.~iii ! Fi-
nally, Alice performs the proper operation (1, sx, sy, or
sz) on her qubitA, depending on the classical informatio
that she receives from Bob, to get the desired stateuc&.

Quantum dense coding and quantum teleportation h
three technical parts in common, whereas the former us
quantum communication channel and the latter a class
©2001 The American Physical Society01-1
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channel. The three common parts areBell preparation@step
~i! of QDC and QT above#, Bell measurement@~iii ! of QDC
and ~ii ! of QT#, and Bell transformation@~ii ! of QDC and
~iii ! of QT#. The communication channel does not depend
the choice of Bell states. Further, in terms of universal ga
the nonlocal Bell measurement is achieved simply by
inverse procedure of the Bell preparation@14#. Accordingly,
in what follows, we will focus our discussion on two techn
cal parts, Bell preparation and Bell transformation.

For comparison, we note that quantum optical realizati
such as those in Refs.@4# and @3# are different from the
conceptual schemes described in terms of universal gate
erations @2,1,14#. In the quantum optical realizations, th
Bell preparation was achieved by generating polarizati
entangled photon pairs using parametric down-convers
which is not described as a unitary gate operation. At
Bell transformation step, a half-wave retardation plate an
quarter-wave plate were used for changing the polariza
and for the polarization-dependent phase shift, respectiv
The Bell measurement step was achieved by a coincide
analysis between four single-photon detectors located a
four output channels of a beam splitter followed by two tw
channel polarizers. It should be noted that in this scheme
Bell measurement bears no relation to the Bell preparat
in contrast to the scheme in terms of universal gates. M
importantly, this coincidence analysis is not enough to d
tinguish all four Bell states from one another.

New Bell states. The choice of Bell states is not uniqu
Eq. ~1! is merely one choice. As we will see below, a pa
ticular choice can be especially convenient for one sys
and others for different systems. This depends most stro
on the way the two qubits interact in a given quantum m
chine. In this work, we first consider the isotropic couplin

H int5
1

2
sW A•sW B5sA

1sB
21sA

2sB
11

1

2
sA

z sB
z ~3!

and the planar coupling

H int5sA
1sB

21sA
2sB

1 ~4!

between a given pair of qubitsA and B. Later we will also
consider Ising coupling@Eq. ~12! below#. In Eqs.~3! and~4!,
the Hamiltonian is normalized by the coupling energy sc
characteristic of a particular realization of the qubits. T
isotropic type of coupling~3! arises, e.g., in quantum com
puters using spins on quantum dots@10#. In this case,~anti-
ferromagnetic! Heisenberg exchange interactionJ54t2/U
~where U is the on-site repulsion on the dot andt is the
hopping amplitude between the dots! determines the cou
pling energy scale. The planar type of coupling~4! is found,
for example, in Josephson qubits@11,12#. The coupling en-
ergy scales are determined by the Josephson coupling en
EJ @11,12#. A proper choice of Bell states should also ta
into account to what extent single-qubit rotations are
lowed. For example, for Josephson qubits in the charg
model@11#, whereas rotations around thex andz axes can be
directly implemented, rotation around they axis is achieved
only in combinations ofx- andz-axis rotations. To make ou
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argument as versatile as possible, we will consider this
stricted case, i.e., the single-qubit Hamiltonian has the fo

H05(
j

~hj
xs j

x1hj
zs j

z!. ~5!

Therefore, we are given the natural two-qubit operation

U int~u!5exp~2 iuH int! ~6!

directly related to Eq.~3! or ~4!, and single-qubit rotations

Rx~u!5exp~2 ius x!, Rz~u!5exp~2 ius z! ~7!

related to Eq.~5!.
Now let us consider the following choice of Bell states

nonlocal orthonormal basis in two-qubit Hilbert space:

uB00&5
1

A2
~ u01&1 i u10&), ~8a!

uB01&5
1

A2
~ u00&1 i u11&), ~8b!

uB10&5
1

A2
~ u11&1 i u00&), ~8c!

uB11&5
1

A2
~ u10&1 i u01&). ~8d!

We will show that for the isotropic or planar type of cou
pling, Eq. ~3! or ~4!, the Bell states~8! have a substantia
advantage in quantum teleportation and quantum dense
ing compared with the original Bell states~1!. To see this, we
first think of the preparation of an entangled pair of qubits
one of the Bell states. Starting from the logical ba
uss8& (s,s850,1), any of the Bell states~8! can be obtained
by uBss8&5UBelluss8& where theBell operator UBell is given
by @13#

UBell5U int~p/4!@Rx~2p! ^ 1#U int~p/4!

5
1

A2 S 0 1 i 0

1 0 0 i

i 0 0 1

0 i 1 0

D . ~9!

Notice that the Bell operator~9! is implemented in a simple
manner by means of only the natural two-qubit gateU int and
single-qubit rotationRx @Eqs.~6! and~7!#. The original Bell
states~1!, on the other hand, can be prepared in combi
tions of the Hadamard gate and the exclusive-OR ~XOR! gate.
However, with isotropic or planar coupling, the implemen
tion of XOR involves a complicated combination of two-qub
operations and single-qubit rotations@10–12#. ~In quantum
optical implementations@3,4#, the polarization-entangled
photon pairs are directly prepared by the parametric do
conversion method, but the efficiency is relatively low.!
1-2
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Since a nonlocal Bell measurement corresponds to
inverse of the preparation procedure@14#, i.e., transforming
uBss8&°uss8&5UBell

21 uBss8& and measuring on the logical ba
sis uss8&, one gets the same advantage mentioned abov
the Bell measurement step also.

To check that it is indeed possible to use the Bell sta
~8! for quantum dense coding and quantum teleportation,
examine the transformation properties of Bell states~8!. For
example,uB00& transforms as

1^ Rx~p!:uB00&°2 i uB01&,

1^ Ry~p!:uB00&°1 i uB10&, ~10!

1^ Rz~p!:uB00&°uB11&,

whereRy(p)5Rz(p)Rx(p) @Eq. ~7!#. Therefore by choos-
ing one of four rotations1, Rx(p), Ry(p), andRz(p), Bob
can encode two bits of information in one qubit to be tra
mitted to Alice. Similarly, we can check for teleportatio
Suppose that Bob wants to ‘‘teleport’’ an unknown sta
uc&5au0&1bu1& to Alice by using, say, the Bell stat
uB00&AB preshared between Alice and Bob. One can sh
that the total wave functionuC&5uB00&AB^ uc&C can be de-
composed into

uC&5
1

2
$Rz~p!uc&A% ^ uB00&BC1

1

2
$ iRy~p!uc&A% ^ uB01&BC

1
1

2
$ iRx~p!uc&A% ^ uB10&BC1

1

2
uc&A^ uB11&BC .

~11!

Therefore, if Bob obtains, say, the resultuB00&BC from the
Bell measurement performed on qubitsB andC, he informs
Alice of the result, and Alice performsRz(p) on her qubitA
to restore the desired stateuc&A .

Ising Coupling. Next we discuss the case of Ising co
pling:
s.

05430
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H int5sA
z sB

z . ~12!

Such an interaction describes, e.g., capacitively coupled
sephson qubits@15,16#. In this case, it turns out that th
choice of Bell states is@17#

uB00&5
1

A2
~ u00&1 i u11&), ~13a!

uB01&5
1

A2
~ u01&2 i u10&), ~13b!

uB10&5
1

A2
~ u10&2 i u01&), ~13c!

uB11&5
1

A2
~ u11&1 i u00&). ~13d!

The Bell operator generating these states@cf. Eq. ~9!# is
given by

UBell5@Rx~2p/2! ^ Rx~2p/2!#U int~p/4!@Rx~p/2!

^ Rx~p/2!#5
1

A2 S 1 0 0 i

0 1 2 i 0

0 2 i 1 0

i 0 0 1

D . ~14!

Following the same lines as in the above discussion,
infers that for the Ising type of coupling the Bell states~13!
form a more convenient basis.

In conclusion, we have considered three generic type
interaction that commonly arise in solid-state qubits. W
showed that a particular choice of Bell states for each t
significantly simplifies the implementation of quantum te
portation and quantum dense coding.
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uB11&5
i

A2
~ uf1&1 i uf2&),

whereuc6& and uf6& are the original Bell states Eq.~1!. The
corresponding Bell matrix@the counterpart of Eq.~9!#

UBell5
i

2S 12 i 0 0 11 i

0 11 i 211 i 0

0 211 i 11 i 0

11 i 0 0 12 i

D
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