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Quantum dissipative dynamics of the magnetic resonance force microscope in the single-spin
detection limit
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We study a model of a magnetic resonance force microscope~MRFM! based on the cyclic adiabatic inver-
sion technique as a high-resolution tool to detect single electron spins. We investigate the quantum dynamics
of spin and cantilever in the presence of coupling to an environment. To obtain the reduced dynamics of the
combined system of spin and cantilever, we use the Feynman-Vernon influence functional and get results valid
at any temperature as well as at arbitrary system-bath coupling strength. We propose that the MRFM can be
used as a quantum measurement device, i.e., not only to detect the modulus of the spin but also its direction.
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I. INTRODUCTION

Magnetic resonance imaging technologies~MRI, NMR,
ESR! are widely used to characterize physical, chemical,
biological samples. What makes them powerful is that th
are nondestructive and capable to probe the th
dimensional structure of the sample.1 Recently, looking at
structures at the molecular or atomic level has become
portant in a number of scientific disciplines. Magnetic res
nance force microscopes~MRFMs! have been developed t
bring magnetic resonance imaging technologies to such
ultimate resolution. The MRFM combines convention
magnetic resonance technology with probe microscope t
nology, e.g., atomic force microscopy, to image individu
molecules or atoms.2 In a MRFM, a magnetic particle
mounted on a cantilever interacts with nuclear or elect
spins in the sample via the very weak magnetic dipole for
When modulated at resonance with the cantilever oscilla
frequency, even a weak magnetic force induces sufficie
large vibrations of the cantilever. By probing the resulti
vibrational motion of the cantilever, it is in principle possib
to detect spins with molecular or atomic resolution. The
clic adiabatic inversion~CAI! technique has been propose2

as a promising method to modulate the magnetic force.
The future of the MRFM depends crucially on the dev

opment of proper mechanical microresonators, e
cantilevers.3 Remarkable progress has been made in this
rection, and the detection of atto-newton or subatto-new
scale forces has been achieved already.4,5 Recently, a nano-
mechanical flexural resonator at microwave frequencies
also been realized.6 The development of the proper techno
ogy to detect nanometer-scale mechanical motion is also
portant. Optical interferometry or electrical parametric tra
ducers are the most common examples.4,5,7 In recent work, a
single-electron transistor capacitively coupled to a nano
0163-1829/2004/69~11!/115419~12!/$22.50 69 1154
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chanical resonator has been used to detect the vibrati
motion of the resonator even in the quantum regime.8

The progress in MRFM and related technologies has a
attracted theoretical interest, especially the question
single-spin detection using the MRFM. Mozyrskyet al.9

studied the relaxation of a spin, treating the cantilever a
classical noise source. Berman and co-workers10,11 studied a
CAI-based MRFM and treated both the spin and the cant
ver as quantum systems that are subject to environme
effects. They addressed two interesting and important iss
which component is measured in an MRFM single-spin m
surement and whether the two spin states~up and down! lead
to distinctively different cantilever motions. They solved n
merically the time-dependent Schro¨dinger equation for the
spin-plus-cantilever system in the absence of coupling to
environment. In the presence of an environment, they c
structed a generalized master equation in the hi
temperature limit, and solved it numerically. We note th
their master equation is based on the Markov approximat
and is not in Lindblad form12,13 ~the normalization and the
positivity of the density matrix are not guaranteed!.

In this paper, we study the measurement of single sp
with the MRFM based on the CAI technique. The starti
point of our work is closely related to Refs. 10 and 11. In t
absence of the coupling to the environment, we solve
time-dependent Schro¨dinger equation exactly and confirm
the numerical results by Berman and co-workers.10,11We use
an open quantum system approach,14,15 i.e., we take the in-
fluence of the environment into account by coupling a h
monic oscillator bath to the cantilever. To calculate the d
namics of the spin during the measurement process, we
an effective-bath approach, and obtain the exact solution
the reduced density matrix of the spin. To find the cantile
dynamics, we solve the Feynman-Vernon influen
functional16,17 in order to obtain the reduced density matr
©2004 The American Physical Society19-1
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of the spin plus cantilever system. Both methods are vali
any temperature as well as for an arbitrary coupling stren
~within the CAI scheme!. This analytical approach allows u
to interpret the results in a transparent way and to investig
the issue whether the MRFM can be used as a quantum m
surement device to probe the spin state.

The paper is organized as follows: In Sec. II we first
troduce the model and discuss our adiabatic Bo
Oppenheimer approximation scheme in connection with
CAI technique. In Sec. III we present the exact solution
the time-dependent Schro¨dinger equation for the spin-plus
cantilever system without coupling to the environment,
results of which will be compared with those in the dissip
tive case in the later sections. In Sec. IV, we investigate
quantum dissipative dynamics of the spin alone using
effective-bath approach. The dynamics of the cantileve
investigated in Sec. V. The physical implications of the s
lution are analyzed in detail and the possibility to use
MRFM as a quantum measurement device is discusse
Sec. VI. Finally, in Sec. VII we draw our conclusions.

II. MODEL

We consider a MRFM setup based on the cyclic adiab
inversion technique~see Fig. 1!. It consists of a ferromag
netic particle mounted on the tip of a cantilever, a stro
static magnetic fieldBi in the z direction, and an rf field
B'(t) rotating with frequencyv rf in thex-y plane modulated
by f(t):

B'~ t !5B'F cos@v rf t2f~ t !#

2sin@v rf t2f~ t !#
G . ~2.1!

FIG. 1. MRFM measurement device. A cantilever carrying
magnetic particle is subject to a static magnetic fieldBi in the
z-direction, and a time-dependent fieldB'(t) rotating with fre-
quencyv rf in the x-y plane. The cantilever is coupled to a samp
spin by a magnetic forceh.
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As in usual NMR setups, one putsv rf5ez[gmBBi , whereg
is theg factor of the spin andmB is the Bohr magneton. Fo
later use, we also definee'[gmBB' . The ‘‘sample’’ con-
sists of a spin interacting with the ferromagnetic particle
the magnetic forceh and with the static and rf fields. Th
Hamiltonian of the spin and the cantilever is given by

H~ t !52
ez

2
ŝz2

e'

2
@ŝ1ei ezt2 if(t)1H.c.#2hŝzẑ1

p̂z
2

2
1

ẑ2

2
,

~2.2!

where theŝ ’s are Pauli matrices,ŝ65(ŝx6 i ŝy)/2, and
ẑ ( p̂z) is the position~momentum! operator of the cantilever
In Eq. ~2.2! and hereafter we use a unit system such tha\
5kB5v05,051, wherev0 is the natural frequency of the
cantilever and ,0[A\/mv0 is the harmonic-oscillator
length. It is convenient to move to a frame rotating with t
rf field by making a transformation18

H→A †HA2 iA †Ȧ ~2.3!

with A5exp$ (i/2)@ezt2f(t)#ŝz%. The resulting Hamiltonian
reads10,11

H~ t !52
1

2
ḟ~ t !ŝz2

1

2
e'ŝx2hŝzẑ1

p̂z
2

2
1

ẑ2

2
. ~2.4!

The idea of the CAI-based MRFM is as follows: The pha
modulationf(t) of the rf field is assumed to be harmon
and causes adiabatic inversions of the spin, which in t
exert an oscillating force on the cantilever. At resonance,
if the frequency of the modulation is equal to the natu
frequency of the cantilever~which is 1 in our units!,

ḟ~ t !5f0sin~ t2w!, ~2.5!

the vibration amplitude of the cantilever can be large ev
for a very small magnetic forceh.

Equation~2.4! describes a spin which couples to a ha
monic oscillator and is itself subject to a time-depend
effective magnetic fieldgmBBeff(t)[e'ex1ḟ(t)ez , where
ex andez are unit vectors in the rotating system. The Ham
tonian in Eq.~2.4! is not exactly solvable. Here we make
plausible approximation based on the following obser
tions. For typical experimental parameters,10,11 Beff varies
slowly compared with the Rabi oscillation frequenc

uḂeff(t)u/uBeff(t)u!e(t)[Ae'
2 1ḟ2(t). According to the

adiabatic theorem,18,19 the spin part of the solution should b
determined by the adiabatic evolution; i.e., the spin ‘‘follow
adiabatically’’ the effective fieldBeff(t). It is therefore con-
venient to choose the basis statesux1(t)& andux2(t)& quan-
tized along the axis parallel toBeff(t) ~notice that there is no
Berry phase because the solid angle enclosed byBeff(t) is
zero!. In this basis, the Hamiltonian in Eq.~2.4! is recast to

H~ t !52
1

2
e~ t !t̂z2h

ḟ~ t !

e~ t !
t̂zẑ1h

e'

e~ t !
t̂xẑ1

p̂z
2

2
1

ẑ2

2
, ~2.6!
9-2
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QUANTUM DISSIPATIVE DYNAMICS OF THE . . . PHYSICAL REVIEW B 69, 115419 ~2004!
where t̂x and t̂z are the Pauli matrices with respect to t
frame rotating adiabatically withBeff(t). We have suppresse
the time arguments to the Pauli matricest̂z(t)
[ux1(t)&^x1(t)u2ux2(t)&^x2(t)u and t̂x(t)
[ux1(t)&^x2(t)u1ux2(t)&^x1(t)u in Eq. ~2.6!. This is be-
cause within the adiabatic approximation, the dynam
of the spin part of the wave function is completely govern
by the basis statesux6(t)& and the dynamic phases

i.e., ux(t)&5c1e2i*0
t dt8e1(t8)ux1(t)&1c2e2 i *0

t dt8e2(t8)ux2(t)&. We
further note that the spin dynamics is much faster than
cantilever motion,e(t)>e'@1. The situation is reminiscen
of the Born-Oppenheimer approximation,20 where the nuclei
interact with the average charge density of the electr
which move much faster. In our system the nuclei cor
spond to the harmonic oscillator which is interacting with t
averaged motion of the spin. Therefore, one can drop
third term in Eq.~2.6!. ~The deviation of the spin due to thi
term is also negligibly small sincehu^ẑ(t)&u!e(t); see be-
low.! Using this approximation we finally get the followin
Hamiltonian, which is the basis of the further consideratio
in the paper:

H~ t !52
1

2
e~ t !t̂z2h f ~ t !t̂zẑ1

p̂z
2

2
1

ẑ2

2
, ~2.7!

where f (t)[ḟ(t)/e(t). This form is justified in a more rig-
orous way in Appendix A, also taking into account the infl
ence of the environment~see below!. Its validity was also
confirmed by the numerical simulations in Ref. 11.

So far we have described a model for an idealized sys
of spin and cantilever. In reality they are coupled to vario
environments, which lead to decoherence as well as da
ing. In particular, the cantilever is inevitably under the infl
ence of phonons or other vibrational modes which are cl
in frequency to the single mode in question. The~direct!
environmental effects for the spin, e.g., hyperfine interacti
spin-lattice relaxation, etc., are relatively small. Therefo
for simplicity, we assume a simple Ohmic bath
oscillators15,21–23directly coupled to the cantilever but not t
the spin. Then the total Hamiltonian for the spin and t
cantilever plus the oscillator bath is given by

Htotal~ t !5H~ t !1 (
k51

` F p̂k
2

2mk
1

mkvk
2

2 S x̂k2
ck

mkvk
2
ẑD 2G .

~2.8!

All the relevant features of the Ohmic bath are characteri
by the spectral density

J~v!5
p

2 (
k

ck
2

mkvk
d~v2vk!

5avQ~12v/vC!, ~2.9!

wherea is a dimensionless parameter characterizing the c
pling between the system and the environment andvC is the
cutoff frequency. The spin dynamics and the probability d
tribution of the cantilever will not depend on the cutoff.
11541
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We describe the system of spin plus cantilever in terms
the reduced density matrixr̂(t)[trBr̂ tot(t) by tracing out the
bath. In the realistic typical experimental situation, the ca
tilever always remains in contact with the environme
Thus, the cantilever and bath are not in a product state a
beginning of the experiment. For the calculation with t
influence functional, we can take this fact into account,
suming that the cantilever and the bath were in a factori
state at a timet5t0. In the limit t0→2` we get then the
realistic initial state for the cantilever at the timet50. If we
would start with a factorized state between cantilever a
bath, the solution would be very sensitive to the initial co
dition of the cantilever; see Sec. IV.

Furthermore, it is assumed that the interaction betw
the spin and the cantilever is turned on att50, i.e., f (t)
50 for t,0. The measurement happens at timest.0. The
initial stater̂(0) of the density matrix is a product state,

r̂~0!5 r̂ (S)~0!r̂ (C)~0!, ~2.10!

where r̂ (S) is the density matrix for the spin only andr̂ (C)

describes the cantilever in thermal equilibrium with the ba
From the CAI scheme and from the associated adiabatic
proximation discussed above it then follows that the den
matrix at timest.0 has the form

^s,zur̂~ t !us8,z8&5rss8
(S)

~0!rss8
(C)

~z,z8,t !. ~2.11!

Thus, the dynamics of the density matrixr̂(t) is completely
determined by the spin-dependent cantilever p
rss8

(C)(z,z8,t).
Here the spin-dependent cantilever part should not

confused with the density matrix for the cantilever on
which is given by

r (C)~z,z8,t !5 (
s56

^s,zur̂~ t !us,z8&

5r11
(S) ~0!r11

(C) ~z,z8,t !

1r22
(S) ~0!r22

(C) ~z,z8,t !. ~2.12!

Analogously, the density matrix for the spin only at tim
t.0 is given by

rss8
(S)

~ t !5rss8
(S)

~0!E
2`

`

dzrss8
(C)

~z,z,t !. ~2.13!

There are several ways to prepare the spin in a partic
state,15 and we will assume a general staterss8

(S) (0).

III. COHERENT SOLUTION WITHOUT BATH

Before we investigate the full Hamiltonian in Eq.~2.8!, it
will be instructive to first consider the problem without ba
@Eq. ~2.7!#. The time-dependent Hamiltonian in Eq.~2.7! can
be solved exactly for arbitrary functionse(t) and f (t) of t
~of course, the variation ofe(t) and f (t) in time should be
sufficiently slow so that the Hamiltonian Eq.~2.7! is mean-
ingful!.
9-3
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GASSMANN, CHOI, YI, AND BRUDER PHYSICAL REVIEW B69, 115419 ~2004!
One can show that the time-evolution operatorU(t2 ,t1)
[T̂ exp@2i*t1

t2dt8H(t8)# (T̂ is the time-ordering operator! is

given by

U~ t2 ,t1!5expF ic~ t1 ,t2!1
i

2Et1

t2
dt8e~ t8!t̂zG

3D„t̂zj~ t2!…U0~ t22t1!D †
„t̂zj~ t1!…, ~3.1!

where

j~ t ![ ih
1

A2
E

0

t

dt8e2 i (t2t8) f ~ t8!, ~3.2!

U0~ t ![exp~2 i t â†â!, ~3.3!

â5( ẑ1 i p̂z)/A2, andD(j) is a displacement operator24 de-
fined for a complex numberj by

D~j!5exp~jâ†2j* â!. ~3.4!

The coefficientc(t1 ,t2) in Eq. ~3.1! is a real function oft1
andt2 ~one does not need an explicit expression of it beca
it drops out of the following calculations!.

To illustrate the dynamics created by the time-evolut
operator in Eq.~3.1!, let us discuss an example. Suppose t
we start at timet50 with the cantilever in a coherent stat

c~z,0!5
1

A4 p
expF2

1

2
z21A2j0z2~Rej0!2G , ~3.5!

and with the spin in a linear superposition~with amplitudes
c1 andc2)

ux~0!&5c1ux1~0!&1c2ux2~0!&. ~3.6!

The total wave function att50 is given by

uC~z,0!&5c~z,0!ux~0!&, ~3.7!

and, at a later timet.0, by

uC~z,t !&5c1c1~z,t !ux1~ t !&1c2c2~z,t !ux2~ t !&.
~3.8!

The cantilever wave function in Eq.~3.8! for each spin com-
ponent is given by

c6~z,t !5
1

A4 p
expF ic~ t,0!6 i E

0

t

dt8e~ t8!G
3expH 2

1

2
z21A2j68 ~ t !z2@Rej68 ~ t !#2J ,

~3.9!

where

j68 ~ t !56j~ t !1j0e2 i t . ~3.10!

Therefore, the average position of the cantilever is^ẑ(t)&6

5A2 Rej68 (t) for spin s56, respectively, whereas the av

erage momentum is given bŷp̂z(t)&65A2 Imj68 (t). Here
it is interesting to note~in comparison with the results be
11541
e

t

low! that exactly at resonance@see Eq.~2.5!#, uj(t)u in Eq.
~3.2! @and henceuj68 (t)u in Eq. ~3.10!# contains a term which
linearly increases with timet. In other words, the oscillation
amplitude of the cantilever gets indefinitely larger and larg
as time passes. This is not surprising since we are driving
ideal oscillator at the resonance frequency, and in fact thi
what allows the MRFM to detect ultrasmall forces. In reali
the cantilever is subject to various environmental effects
the oscillation amplitude is bounded from above~i.e., theQ
factor is finite!. This is the case that we will study below.

IV. DYNAMICS OF THE SPIN

Now we take the influence of the bath into account. In t
section, we first analyze the dynamics of the spin. As
scribed above@see the discussion above Eq.~2.8!#, there are
several environmental effects for the spin. In this calculati
we assume that such effects directly cause the spin to
small compared to the interaction with the measuring dev
i.e., the cantilever coupled to the oscillator bath. Thus,
decoherence time of the spin in the absence of the cantil
is assumed much longer than the time we need for the m
surement. These different time scales are necessary to
vide cyclic inversions of the spin.

A similar situation appears in the well-known Ster
Gerlach experiment, where the environment first collap
the trajectory of the particle which then causes the colla
of the spin. As in our calculation, other decoherence mec
nisms, which act directly on the spin, are neglected.

When we are interested in the dynamics of the spin al
~the dynamics of the cantilever will be discussed in the f
lowing section!, we can regard the cantilever as a part of t
environment. In fact, Garget al.25 ~also see Refs. 26–28!
showed that the problem is equivalent to a spin coupled
early to an oscillator bath:

Htot~ t !52
1

2
e~ t !t̂z2h f ~ t !t̂z(

k
gk~ b̂k

†1b̂k!1(
k

vkb̂k
†b̂k .

~4.1!

The distribution of the oscillator frequenciesvk and the cou-
pling constantgk are now characterized by a non-Ohm
spectral density

Jeff~v![(
k

gk
2d~v2vk!5

1

p

av

~v221!21~av!2
.

~4.2!

To investigate the spin dynamics, we write the reduc
density matrix of the spin

r̂ (S)~ t !5trBUtot~ t !r̂ tot~0!Utot
† ~ t ! ~4.3!

in terms of the time-evolution operatorUtot(t) associated
with Htot(t) in Eq. ~4.1!. In analogy to Eq.~3.1!, the time-
evolution operator is given by

Utot~ t !5expF i

2E0

t

dt8e~ t8!t̂zG)
k

D„t̂zjk~ t !…e2 ivktb̂k
†b̂k,

~4.4!
9-4
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where

jk~ t !5 ihgkE
0

t

dt8e2 i (t2t8)vkf ~ t8!, ~4.5!

andD is now the displacement operator for thekth mode of
the bath, i.e.,â should be replaced byb̂k in Eq. ~3.4!.

For the initial stater̂ tot(0), weassume@see Eqs.~2.10!#

r̂ tot~0!5 r̂ (S)~0!)
k

e2bvkb̂k
†b̂k

Zk
. ~4.6!

Then the density matrix for the spin is given by

rss8
(S)

~ t !5rss8
(S)

~0!expF i
~s2s8!

2 E
0

t

dt8e~ t8!G
3)

k
^D †

„s8jk~ t !…D„sjk~ t !…&k , ~4.7!

where^•••&k is the average with respect to thekth oscillator
in the bath.

Equation ~4.7! shows that the diagonal elements of t
density matrix (s5s8) are constant in time

rss
(S)~ t !5rss

(S)~0!. ~4.8!

In other words, there is no spin relaxation and the spin
namics is pure dephasing because there are no trans
fields. This is consistent with the adiabatic approximation
made at the beginning.

On the other hand, the off-diagonal elements (sÞs8) are
expected to vanish rapidly with time. This can be seen fr
@see Eq.~4.7!#

r12
(S) ~ t !5r12

(S) ~0!expF2G~ t !1 i E
0

t

dt8e~ t8!G , ~4.9!

where

G~ t ![2(
k

ujk~ t !u2cothS vk

2TD , ~4.10!

or in terms of the spectral density function

G~ t !52h2E
0

`

dvJeff~v!cothS v

2TDU E
0

t

dt8eivt8 f ~ t8!U2

.

~4.11!

Figure 2 showsur12
(S) (t)u evaluated using Eqs.~4.9! and

~4.11!. To compare our results with those of Berman a
co-workers10,11 who assumed an initial product state of ca
tilever and bath, the inset of Fig. 2 showsur12

(S) (t)u for a
Gaussian initial state of the cantilever.~To obtain these re-
sults we evaluate the path-integral formulas in Appendix
with t050 instead of taking the limitt0→2`.) If we com-
pare the main part of Fig. 2 with the inset the strong dep
dence on the initial conditions is evident. The slower dec
and more pronounced oscillations shown in the inset a
consequence of the oscillatory relaxation of the cantileve
its thermal equilibrium state if one starts with an initial pro
uct state of cantilever and bath. On increasing the coup
a, the oscillatory behavior becomes less visible since
cantilever relaxes immediately to its thermal state.
11541
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V. DYNAMICS OF THE CANTILEVER

In Sec. III, we described the driven dynamics of the o
erwise isolated system of spin and cantilever determined
the Hamiltonian Eq.~2.7!. In this section, we now take into
account the influence of the environment starting from
Hamiltonian Eq.~2.8!. The reduced dynamics is obtaine
analytically with the Feynman-Vernon influence fun
tional16,17 for arbitrary coupling strengtha to the bath and
for arbitrary temperatureT. The advantage of this method a
compared to Ref. 11 is that no master equation is used
that there is no restriction on the number of basis functio
used to numerically integrate the problem.

The reduced dynamics of the cantilever obtained with
influence functional is given by

rss8
(C)

~zf ,zf8 ,t !5E dzidzi8Jss8~zf ,zf8 ,t;zi ,zi8 ,t0!

3rss8
(C)

~zi ,zi8 ,t0!, ~5.1!

where the influence functional is

Jss8~zf ,zf8 ,t;zi ,zi8 ,t0!5E DzDz8exp~ iSss8@z,z8# !, ~5.2!

s,s856, and the action is defined by

Sss8@z,z8#5Ss
0@z#2Ss8

0
@z8#

2
a

2Et0

t

dt@z~t!2z8~t!#@ ż~t!1 ż8~t!#

1
i

2Et0

t

dtE
t0

t

dt8@z~t!2z8~t!#

3K~t2t8!@z~t8!2z8~t8!#. ~5.3!

FIG. 2. Main plot: ur12
(S) (t)u for different temperaturesT

50, 1, 2, 5, 10, and 100, forf051000, e'5400, h50.3, a
50.006, andvC51000. The initial condition for cantilever and
bath is the thermal equilibrium state. Inset: same quantity for
initial product state of cantilever and bath. Initially, the cantilev
wave function is a Gaussian with widths5A2. In both cases,
rss8

(S)(0)51/2 for s,s856.
9-5
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This form of the action is only valid for an Ohmic bath.21

Furthermore,K(t) is the real part of the bath correlatio
function

K~t![Rê X̂~t!X̂~0!&, ~5.4!

whereX̂(t)5(kckx̂k(t). Finally,

Ss
0@z#5E

t0

t

dtF1

2
ż2~t!2

1

2
z2~t!1hs f~t!z~t!1

1

2
e~t!sG

~5.5!

is the bare action without oscillator bath.
The action can be simplified further by introducing re

tive coordinates defined byR5(z1z8)/2 andr 5z2z8. The
action is then found to be

Sss8@R,r #5Sss8
0

@R,r #2aE
t0

t

dtṘ~t!r ~t!

1
i

2Et0

t

dtE
t0

t

dt8r ~t!K~t2t8!r ~t8!, ~5.6!

with

Sss8
0

@R,r #5E
t0

t

dtH Ṙ~t! ṙ ~t!2R~t!r ~t!

1h f ~t!R~t!~s2s8!1
1

2
h f ~t!r ~t!~s1s8!

1
1

2
e~t!~s2s8!J . ~5.7!

In the next step, the action is expanded around the cla
cal path. The classical equations of motion can be found
minimizing this action and read

R̈~t!1aṘ~t!1R~t!5FR~t!, ~5.8!

r̈ ~t!2a ṙ ~t!1r ~t!5Fr~t!, ~5.9!

FR~t!5
1

2
h f ~t!~s1s8!1 i E

t0

t

dt8K~t2t8!r ~t8!,

~5.10!

Fr~t!5h f ~t!~s2s8!, ~5.11!

with classical solutionsRcl(t) andr cl(t), respectively. Note
that the solutions are complex,29 and the dependence ons,s8
of all these quantities has been suppressed. The classica
lutions, which are given in Appendix B, are linear in th
boundary values Rf , r f , Ri , and r i . Therefore,
Sss8@Rcl ,r cl# is a bilinear form in these variables. We obta

Jss8~Rf ,r f ,t;Ri ,r i ,t0!5
1

N~ t !
exp~ iSss8@Rcl ,r cl# !, ~5.12!

where all the contributions from the fluctuations around
classical path are contained in the time-dependent, but s
11541
si-
y

so-

e
in-

independent, normalization constantN(t), which can be ob-
tained from the normalization condition

(
s56

E
2`

`

dRfrss~Rf ,r f50,t !51. ~5.13!

The Gaussian form of the expressions leads to a final redu
density matrix of Gaussian form if the initial density matr
is Gaussian, which is true for a coherent state. Therefore
deal with Gaussian wave packets also in the dissipative c
The explicit formulas are discussed in detail in Appendix
where the solution for the reduced dynamics is obtain
starting from a Gaussian wave packet at timet0. We then
take the limit t0→2` such that the information about th
initial state is lost at timet50.

We will now give analytical expressions of the dens
matrix for the diagonal and off-diagonal elements with r
spect to the spin degree of freedom. Let us first discuss
result fors5s8:

rss
(C)~R,r ,t !5

1

A2psR

expH 2
1

2sR
2 @R2xs~ t !#2

2
1

2s r
2

r 21 ir ẋ s~ t !J , ~5.14!

where the final coordinates have been replaced byR[Rf and
r[r f . The widths of the Gaussian peaks are independen
the spin. The width in theR direction is given by

sR
25E

0

`

dvJeff~v!cothS v

2TD . ~5.15!

sR increases with temperature. This is because the cantil
position suffers more thermal fluctuations. The width in thr
direction is found to be

1

s r
2

5E
0

vC
dvv2Jeff~v!cothS v

2TD . ~5.16!

Note that as is well known the momentum width diverg
with the cut-off frequencyvC which was defined after Eq
~2.9!. That is why we kept the dependence on the cutoff
this integral. The spin dynamics and the probability distrib
tion of the cantilever will not depend on the cutoff. In co
trast to sR , s r decreases with temperature; this is natu
since the cantilever gets closer to a classical oscillator
temperature goes up. The temperature behavior of these
integrals can be read off in the limit of smalla!1, viz.,

sR
2'

1

s r
2
'

1

2
cothS 1

2TD . ~5.17!

The Gaussian wave packets are moving according to

xs~ t !5hsE
0

t

dt8e2 ~a/2!(t2t8)
sin@vR~ t2t8!#

vR
f ~ t8!,

~5.18!
9-6
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which depends on the spins. The oscillator frequencyvR

5A12(a/2)2 is renormalized due to the coupling to th
bath. Furthermore,xs(t) is the solution of the coordinate of
classical dissipative driven harmonic oscillator with a sp
dependent driving forcehs f(t) starting from the initial con-
ditions xs(0)50 andẋs(0)50. So the result becomes ver
clear, because the classical solution is well known to be
oscillating function, which goes through a transient regi
and for t@1/a the amplitude of the oscillation saturates a
finite value. The oscillation is periodic~but not necessarily
sinusoidal! in time with unit period (T052p/v0). Conse-
quently, for t@1/a the density matrix will show a generi
steady-state behavior independent of the details of the in
preparation of the system.

The density matrixrss
(C)(R,r ,t) behaves quite differently

with respect to the coordinatesR and r. As a function ofR,
rss

(C)(R,r ,t) is a Gaussian distribution with a standard dev

tion sR and averagêR(t)&5xs(t). On the other hand,ẋs(t)
is the velocity of a classical oscillator@see above#, it shows
oscillatory behavior int andr superimposed on the Gaussia
envelope with widths r ; see Figs. 3–6. Thus, the off
diagonal elementsrss

(C)(z,z8,t) (zÞz8) exhibit an oscillat-
ing behavior int. However, this should not be confused wi
a coherent oscillation, which is not expected in this lon

FIG. 3. ur (C)(R,r ,t)u for a time series in the steady-state regim
starting at timetm at which the two peaks are not separated, e
tm5988. The units have been chosen such that both the na
frequencyv0 of the cantilever and its harmonic oscillator length a
equal to 1.T052p/v0 , a50.006, andT5100; the other param
eters are as in the caption of Fig. 2. The interference fringes are
to the driving.
11541
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FIG. 4. ur (C)(R,r ,t)u for a time series in the steady-state regim
for a50.012 andT5100.

FIG. 5. ur (C)(R,r ,t)u for a time series in the steady-state regim
for a50.012 andT550.
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GASSMANN, CHOI, YI, AND BRUDER PHYSICAL REVIEW B69, 115419 ~2004!
time limit. The oscillation is a consequence of the exter
driving f (t) @i.e., frequency modulationḟ(t)]. The diagonal
elements~both in s andz) rss

(C)(z,z,t) do not show such an
oscillation.

The behavior ofxs(t) can be illustrated by approximatin
f (t) by its primary oscillation amplitude:

f ~ t !' f 0sin~ t !1~higher harmonics!, ~5.19!

where

f 05
4

p S e'

f0
D @E~2f0

2/e'
2 !2K~2f0

2/e'
2 !#. ~5.20!

Here, K(x) and E(x) are the complete elliptic integrals o
the first and second kind.30 One obtains

xs~ t !'hs f0S 2
cos~ t !

a
1e2(a/2)tFcos~vRt !

a
1

sin~vRt !

2vR
G D

1~higher harmonics!. ~5.21!

This solution shows the main features of the spin-depend
separation xs(t), namely, the transient behavior an
the steady-state oscillations:xs(t)'2hs f0cos(t)/a. It is
interesting to notice that the average cantilever moti
are exactly in opposite phases~shift by p) for spin up
(s511) and down (s521). This was also concluded from
the numerical simulation presented Refs. 10 and 11. Th
the MRFM can be used as a quantum measurement de
i.e., to detect the state of the spin; see below. Therefore
we start initially with the two spin components populate
r11

(S) (0),r22
(S) (0) .0, thenr (C)(R,r ,t)5r11

(S) (0)r11
(C) (R,r ,t)

1r22
(S) (0)r22

(C) (R,r ,t) will show two peaks moving in oppo
site directions as time goes on; see discussions above
Figs. 3–6. It should be stressed that to separate the two p
with sufficient resolution, the widths of the peaks, Eq.~5.15!,
should not be larger than the maximum separation,h f 0 /a;
see Eq.~5.21!. Clearly, this criterion restricts the maximum
operation temperature of the device. Figures 3–6 show
typical behavior of the density matrixr (C)(R,r ,t) of the can-
tilever for rss8

(S) (0)51/2 for s,s856 as initial state. As the
coupling to the environmenta increases, the distance b
tween the peaks shrinks and they are harder to distingu
see Figs. 3 and 4. A similar behavior is observed as
temperature increases witha fixed; see Figs. 5 and 6.

Now we turn to the off-diagonal elementss52s8:

rs,2s
(C) ~R,r ,t !5

1

A2psR

expH 2
1

2sR
2 @R2 iqs~ t !#22

1

2s r
2

r 2

1r zs~ t !2G~ t !1 i E
0

t

dt8e~ t8!J , ~5.22!

where

qs~ t !52hsE
0

`

dvJeff~v!cothS v

2TD
3E

0

t

dt8 f ~ t8!cos@v~ t2t8!# ~5.23!
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zs~ t !52hsE
0

`

dvvJeff~v!cothS v

2TD
3E

0

t

dt8 f ~ t8!sin@v~ t2t8!#. ~5.24!

In the r direction,rs,2s
(C) (R,r ,t) has a Gaussian shape ce

tered atzs(t)/s r
2 with width s r . In the R direction, it is an

oscillatory function imposed on a Gaussian envelope w
width sR . Overall, the functionrs,2s

(C) (R,r ,t) decays witht
in the same way as shown in Fig. 2, i.e.,rss8

(C)(R,r ,t) for s
Þs8 can be observed only in the transient regime. The de
is described by the functionG(t); see Eq.~4.11!. Note that a
trace over the cantilever dynamics leads us back to the
sults obtained in a much simpler way in Sec. IV.

VI. MRFM AS A QUANTUM MEASUREMENT DEVICE

One of the conclusions of the analysis presented her
that the cantilever oscillates with the same amplitude
both initial spin states~up and down!. Probing the amplitude
of the cantilever vibration can only tell the absolute value
the spin in the direction ofBeff(0), but not itssign. However,
the oscillations for the initial spin up and down states a
completely out of phase~phase difference ofp); see Sec. V.
This fact was also noticed by Bermanet al.10 in their numeri-
cal simulations. Hence, there is the possibility to use
MRFM as a quantum measurement device, i.e., to detect
direction of the spin with the MRFM by probing the~dis-

FIG. 6. ur (C)(R,r ,t)u for a time series in the steady-state regim
for a50.012 andT510.
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QUANTUM DISSIPATIVE DYNAMICS OF THE . . . PHYSICAL REVIEW B 69, 115419 ~2004!
crete! relative phases of the cantilever oscillations. In t
quantum theory of measurement, this falls into the categ
of the indirect quantum measurement scheme.14 In such a
scheme, the quantum object supposed to be measure
coupled to another quantum system, the so-called quan
probe. The classical measurement device then detects
quantum probe instead of probing directly the quantum
ject. In our case, the quantum object is the spin, the quan
probe corresponds to the cantilever, and the classical m
surement device can be, e.g., the fiber-optical interferome
A conceivable scheme to measure the relative phases o
cantilever oscillations is to use a reference spin which
prepared in a definite known state, for example, by apply
a strong magnetic field in a desired direction. The two s
nals from the reference spin and the spin in an unknown s
are superposed to determine the relative phase of the
known spin.

VII. CONCLUSIONS

We have studied the CAI-based MRFM as a hig
resolution tool to detect single spins. The quantum dynam
of the spin-plus-cantilever system was analyzed in terms
the reduced density matrices,r̂ (S)(t) ~for the spin! and
r̂ (C)(t) ~for the cantilever!, in the presence of coupling to th
environment. Using an effective bath model, we were able
determine the dynamics of the spin during the measurem
process. Our results remain valid at all temperatures as
as the adiabatic approximation is satisfied. We have ev
ated the influence functional for the combined system of s
and cantilever to obtain the quantum dissipative dynamic
the cantilever. These results are valid for all temperatures
coupling strengths. Finally, we have proposed that
MRFM can be used as a quantum measurement device,
not only to detect the absolute value of the spin but also
detect its direction.

The dissipative dynamics of an open quantum system
sensitive to the low-frequency behavior of the spectral d
sity of the environment. While the Ohmic model Eq.~2.9! is
a plausible model, it will be worthwhile to identify th
sources of the environmental fluctuations and construc
physical model of the environment starting from a more m
croscopic theory of the cantilever.
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APPENDIX A: ESTIMATION OF THE SPIN-FLIP RATE

The cyclic adiabatic inversion scheme implies two ba
assumptions:~i! The variation of the external drivingḟ(t) is
slow enough to allow for an adiabatic approximation,18 i.e.,
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uf̈(t)u!e'
2 . ~ii ! The time scales of the spin dynamics and t

cantilever dynamics are well separated (e'@1) such that the
Born-Oppenheimer approximation is justified. Yet, the fin
rates of change in the external driving and the cantile
position will induce spin-flips. The spin-flip rate can be es
mated by the Landau-Zener transition~adiabatic transition!
rate.19,31–34For this purpose, we rewrite Eqs.~2.4! and~2.8!
in the form

HLZ~ t !52
1

2
F~ t !ŝz2

1

2
e'ŝx , ~A1!

whereF(t)[ḟ(t)12h^ ẑ(t)&. The back-action of the canti
lever has been accounted for by its time-dependent ave
position, and the contribution from it will be estimated belo
in a self-consistent way based on the results in Sec. V.
probability that the spin-flips against the effective magne
field Beff(t) during one period~i.e., 2p/v0) is then given by

PLZ.expS 2
pe'

2

n D , ~A2!

where we have takenn[maxuḞ(t)u to estimate the wors
case.

It follows from Eqs.~2.5! and ~5.21! that

n<maxuf̈~ t !u12hmaxU d

dt
^ ẑ~ t !&U5f012

h2

a
f 0 .

~A3!

Therefore, assuming typical values for the parameters,f0
;1000, e';400, h;1, anda;0.001, we havef 0;1 and

PLZ,expS 2p
e'

2

f012h2f 0 /a
D ;10270. ~A4!

Note that the back-action of the cantilever is stronger
largerQ factors of the cantilever (Q.1/a) since the maxi-
mum velocity of the cantilever increases with theQ factor.

APPENDIX B: PATH-INTEGRAL FORMULAS

In this appendix we will fill in some of the details left ou
in Sec. V. It is convenient to defineg[a/2 as the friction
constant.

The classical solutions to Eqs.~5.8! and~5.9! are given by

r cl~t!5
1

sin@vR~ t2t0!#
$r isin@vR~ t2t!#eg(t2t0)

1@r f2r p~ t !#sin@vR~t2t0!#eg(t2t)%1r p~t!,

~B1!

Rcl~t!5
1

sin@vR~ t2t0!#
$Risin@vR~ t2t!#e2g(t2t0)

1@Rf2Rp~ t !#sin@vR~t2t0!#e2g(t2t)%1Rp~t!,

~B2!
9-9
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where

r p~t!5E
t0

t

dt8Gr~t2t8!Fr~t8!, ~B3!

Rp~t!5E
t0

t

dt8GR~t2t8!FR~t8!, ~B4!

and the Green’s functions are defined by

GR~t!5Q~t!e2gt
sin~vRt!

vR
, ~B5!

Gr~t!5Q~t!egt
sin~vRt!

vR
. ~B6!

The influence functional fors85s is found to be

Jss~Rf ,r f ,t;Ri ,r i ,t0!

5
uN~ t !u

2p
exp$ i @K f~ t !Rfr f1Ki~ t !Rir i2L~ t !Rir f

2N~ t !Rfr i1ai~ t !r i1af~ t !r f #2A~ t !r f
2

2B~ t !r f r i2C~ t !r i
2%, ~B7!

where the functions appearing in the influence functional
all real and defined by

K f~ t !5vRcot@vR~ t2t0!#2g, ~B8!

Ki~ t !5vRcot@vR~ t2t0!#1g, ~B9!

L~ t !5
vRe2g(t2t0)

sin@vR~ t2t0!#
, ~B10!

N~ t !5
vReg(t2t0)

sin@vR~ t2t0!#
, ~B11!

A~ t !5
1

2

e22gt

sin2@vR~ t2t0!#
E

t0

t

dtE
t0

t

dt8sin@vR~t2t0!#

3K~t2t8!sin@vR~t82t0!#eg(t1t8), ~B12!
11541
re

B~ t !5
e2g(t1t0)

sin2@vR~ t2t0!#
E

t0

t

dtE
t0

t

dt8sin@vR~ t2t!#

3K~t2t8!sin@vR~t82t0!#eg(t1t8), ~B13!

C~ t !5
1

2

e22gt0

sin2@vR~ t2t0!#
E

t0

t

dtE
t0

t

dt8sin@vR~ t2t!#

3K~t2t8!sin@vR~ t2t8!#eg(t1t8), ~B14!

af~ t !5 ẋ~ t !2K f~ t !x~ t !, ~B15!

ai~ t !5N~ t !x~ t !, ~B16!

x~t!5hsE
t0

t

dt8GR~t2t8! f ~t8!, ~B17!

ẋ~t!5hsE
t0

t

dt8]tGR~t2t8! f ~t8!. ~B18!

In all of these expressions, the dependence ont0 has been
suppressed.

Let us now discuss the solution for the density matrix.
time t5t0 we start in a product state between the cantile
and bath. The cantilever density matrix is assumed to b
Gaussian wave packet with a widths at t5t0,

rss8
(C)

~z,z8,t0!5
1

A2ps
expS 2

1

4s2
~z21z82!D .

~B19!

One could start from a more general initial state, but
will later take the limitt0→2`, such that all the informa-
tion on the initial state is lost completely at timet50. The
experiment starts at timet50 by switching on the magnetic
field. At this time the cantilever has interacted with the ba
for a very long time and is in equilibrium with the bath, i.e
not any more in a product state.

The general solution for the diagonal elements ofrss8
(C)

starting from this initial condition is
rss
(C)~Rf ,r f ,t !5

uN~ t !u

A2p

2s

AD~ t !
expH F r f

2S 2A~ t !1F2B2~ t !28A~ t !C~ t !2
L2~ t !

2 Gs2

24$A~ t !Ki
2~ t !1L~ t !@B~ t !Ki~ t !1C~ t !L~ t !#%s4D1 ir f$af~ t !24@ai~ t !B~ t !22af~ t !C~ t !#s2

14Ki~ t !@af~ t !Ki~ t !1ai~ t !L~ t !#s4%1 iRfr f$K f~ t !14@2C~ t !K f~ t !1B~ t !N~ t !#s2

14Ki~ t !@K f~ t !Ki~ t !2L~ t !N~ t !#s4%22@ai~ t !2N~ t !Rf #
2s2G Y D~ t !J , ~B20!

where

D~ t !5118C~ t !s214Ki
2~ t !s4. ~B21!
9-10
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In the limit t0→2` we obtain the final result presented in Eq.~5.14!.
The influence functional fors852s is found to be given by

Js,2s~Rf ,r f ,t;Ri ,r i ,t0!5
uN~ t !u

2p
expS i FK f~ t !Rfr f1Ki~ t !Rir i2L~ t !Rir f2N~ t !Rfr i1Af~ t !Rf1Ai~ t !Ri1E

t0

t

dte~t!G D
3exp@2A~ t !r f

22B~ t !r f r i2C~ t !r i
21bi~ t !r i1bf~ t !r f1b~ t !#, ~B22!
ff-
where

Af~ t !5 ẏ~ t !2Ki~ t !y~ t !, ~B23!

Ai~ t !5L~ t !y~ t !, ~B24!

bf~ t !52A~ t !y~ t !2E
t0

t

dtE
t0

t

dt8y~t8!

3K~t2t8!
sin@vR~t2t0!#e2g(t2t)

sin@vR~ t2t0!#
, ~B25!

bi~ t !5B~ t !y~ t !2E
t0

t

dtE
t0

t

dt8y~t8!

3K~t2t8!
sin@vR~ t2t!#eg(t2t0)

sin@vR~ t2t0!#
, ~B26!
11541
b~ t !52A~ t !y2~ t !1y~ t !E
t0

t

dtE
t0

t

dt8y~t8!

3K~t2t8!
sin@vR~t2t0!#e2g(t2t)

sin@vR~ t2t0!#

2
1

2Et0

t

dtE
t0

t

dt8y~t!K~t2t8!y~t8!, ~B27!

y~t!52hsE
t0

t

dt8Gr~t2t8! f ~t8!, ~B28!

ẏ~t!52hsE
t0

t

dt8]tGr~t2t8! f ~t8!. ~B29!

This leads to the following general expression for the o
diagonal elements ofrss

(C) :

8

In
rs,2s
(C) ~Rf ,r f ,t !5

uN~ t !u

A2p

2s

AD~ t !
expH Fr f

2S 2A~ t !1F2B2~ t !28A~ t !C~ t !2
L2~ t !

2 Gs224$A~ t !Ki
2~ t !1L~ t !@B~ t !Ki~ t !

1C~ t !L~ t !#%s4D1r f$bf~ t !1@24B~ t !bi~ t !18bf~ t !C~ t !1Ai~ t !L~ t !#s214@Ai~ t !B~ t !Ki~ t !

1bf~ t !Ki
2~ t !12Ai~ t !C~ t !L~ t !1bi~ t !Ki~ t !L~ t !#s4%1 iRfr f$K f~ t !14@2C~ t !K f~ t !1B~ t !N~ t !#s2

14Ki~ t !@K f~ t !Ki~ t !2L~ t !N~ t !#s4%1 iRf$Af~ t !18Af~ t !C~ t !s214Ki~ t !@Af~ t !Ki~ t !1Ai~ t !N~ t !#s4%

12@bi~ t !2 iN~ t !Rf #
2s22

Ai
2~ t !

2
s224Ai~ t !@Ai~ t !C~ t !1bi~ t !Ki~ t !#s4GY D~ t !1 i E

t0

t

dte~t!1b~ t !J .

~B30!

The reduced dynamics of the spin alone is found by tracing out the cantilever coordinates. The result is

rs,2s
(S) ~ t !5rs,2s

(S) ~0!expS 2Af
2~ t !

C~ t !

N2~ t !
1

Af~ t !bi~ t !

N~ t !
1b~ t !2

Af
2~ t !

8s2N2~ t !
2

s2

2N2~ t !
@Af~ t !Ki~ t !1Ai~ t !N~ t !#21 i E

t0

t

dte~t!D
[rs,2s

(S) ~0!expS 2G~ t !1 i E
t0

t

dte~t! D . ~B31!

The decay rateG(t) @see Eq.~4.11!#, can be obtained in the limitt0→2` after a straightforward but tedious calculation.
the same limit, we get the result for the density matrix presented in Eq.~5.22!.
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