

Synthesis and Characterization of Atomic and Electronic Properties of Graphene Directly Grown on Dielectric Substrates

Young Jae Song 송영재

SAINT & Depart. of Physics

Sungkyunkwan University (SKKU), Suwon, Korea

Colloquium @Korea Univ., Oct. 18, 2017

Research Issues in ARON Lab

Nano Electronics

- CVD Graphene/H-Ge(110) & Graphitic Carbon Nitride
- TMD (WSe2 & ReS2) & TMC
- In-house DFT Calculations

Nano Optics

- Photofluidics of AuNP Corral
- Graphene Plasmonics w/ AuNP
- EL Study of QD for Display
- Perovskite for Solar Cell
- In-house Simulations

Graphene-based Heterostructures

- Direct CVD Growth of Graphene/h-BN and BGB
- Direct CVD Growth of Graphene on Dielectric Substrates
- Reciprocal CVD Growth of Polycrystalline Bilayer Graphene

Qingshan YANG

Facilities in ARON Lab

IKI

In house DFT Calculations

1.5 V

- Tools: VASP or Quantum Espresso
- GGA within PBE formalism was employed for the exchange– correlation potential.
- PAW method and a plane-wave basis set with an energy cutoff of 500 eV
- Van der Waals Correction
- Spin-polarized DOS
- Band Calculation by HSE Exchange Correction
- STM Image Simulation
- 1 node of 20 cpu's in CINAP(IBS)@SKKU
- Tachyon 2 @KISTI

2.0 V

In house FDTD Simulation

Graphene Grown on/with h-BN

Issue 1: Graphene/h-BN Heterostructure

SUNG KYUN KWAN

www.MaterialsViews.com

A Platform for Large-Scale Graphene Electronics – CVD Growth of Single-Layer Graphene on CVD-Grown Hexagonal Boron Nitride

Min Wang, Sung Kyu Jang, Won-Jun Jang, Minwoo Kim, Seong-Yong Park, Sang-Woo Kim, Se-Jong Kahng, Jae-Young Choi, Rodney S. Ruoff, Young Jae Song,* and Sungjoo Lee*

Catalytic Transparency of Hexagonal Boron Nitride on Copper for Chemical Vapor Deposition Growth of Large-Area and High-Quality Graphene

Min Wang,^{†,†} Minwoo Kim,^{†,†} Dorj Odkhuu,⁵ Noejung Park,⁵ Joohyun Lee,^{†,‡} Won-Jun Jang,[†] Se-Jong Kahng,[†] Rodney S. Ruoff,^{1,+}* Young Jae Song,^{†,‡,#,*} and Sungjoo Lee^{†,‡,®,*}

7

¹SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea, ⁴Center for Human Interface Nanotechnology (HINT), Samsung-SKKU Graphene Center, Sungkyunkwan University (SKKU), Suwon 440-746, Korea, ⁶Interdisciplinary School of Green Energy and Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea, ⁶Department of Physics, Korea University, Seoul 136-713, Korea, ⁻Center for Multidimensional Carbon Materials (CMCM; an Institute for Basic Science (IBS) Center on the UNIST Campus), Department of Chemistry and School of Materials Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan 689-798, Republic of Korea, [#]Department of Physics, Songkyunkwan University (SKKU), Suwon 440-746, Korea, and [®]College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Korea

Motivation

- Most of graphene measurements were done on this way.
- Roughness (1) and charge impurities (2) of SiO_2 with chemical impurities (3) underneath of graphene disturbs the graphene properties.

Transferring h-BN and Graphene sequentially on SiO₂

- h-BN layers are used as a flat surface without charge impurities.
- Chemical impurities by transferring graphene or h-BN with wet chemistry still remains as scatter.

Motivation

- Transferring Graphene/h-BN on SiO₂

- Approach: Transfer the clean interface by using a hybrid structure.
 - I. Large Area CVD Growth of h-BN on Cu foil
 - II. Sequential CVD Growth of Graphene on h-BN/Cu
 - III. Etching Cu foil
 - IV. Transfer this Graphene/h-BN structure with keeping the clean interface.

Crystallinity (TEM & SAED)

Robust enough to keep the layered structure

Two distinct Single crystal phases from both of graphene and h-BN at least 200 nm x 200 nm

Graphene Quality (Raman Spectroscopy)

Electrical Properties

- a) Resistance versus applied gate voltage for CVD-grown graphene/h-BN, mechanically transferred graphene/h-BN, and graphene on SiO₂.
- b) Carrier mobility as a function of charge carrier density for the three devices.
- c) Temperature dependences of the resistivity at $V_g V_{Dirac} = 10$ V for the three devices.

Atomic and Electronic Structures (STM/STS)

Growth Mechanism (DFT Calculations)

Growth Mechanism (Surface Potential)

AFM Topography

Raman Peak (h-BN) Mapping

KPFM Mapping

ARON I

Issue 2: BN/Graphene/BN Heterostructure (BGB)

Nanoscale

COMMUNICATION

Received 7th February 2015, Accepted 31st March 2015

DOI: 10.1039/c5nr00889a www.rsc.org/nanoscale *In situ* synthesis of a large area boron nitride/ graphene monolayer/boron nitride film by chemical vapor deposition[†]

Qinke Wu,^a Sung Kyu Jang,^a Sangwoo Park,^a Seong Jun Jung,^a Hwansoo Suh,^b Young Hee Lee,^{*c} Sungjoo Lee^{*a.d,e} and Young Jae Song^{*a.c,f}

CHEMISTIN

View Article Online

Growth Dynamics

Growth Dynamics

BN Growth on Graphene/h-BN/Copper

BN Growth on Graphene/Copper

ARON Lab

Crystal Structure (TEM/SAED)

Graphene/h-BN

BN(40 min)/Graphene/h-BN

BN(60 min)/Graphene/h-BN

ARON Lab

Device Performance

Issue 2 : Double Layer Graphene Film

Growth Dynamics : A Role of h-BN

ARON Lab

Statistical Study (Optical Microscopy)

Intra-Island Angles

Inter-Island Angles

⊿ab

Quality and Epitaxy of Multilayer Graphene

ARON Lab

Quality and Epitaxy of Bilayer Graphene

Figure 1. (a) An optical reflection image of CVD graphene transferred to Si/285 nm SiO₂ and a large area widefield G band Raman image of the same region. The G band image contains striking features in the multilayer regions, which are not seen in the reflection image. (inset) Structure of tBLG with a twist angle θ. (b) Dark field TEM, G band, and 2D band Raman images of the same multilayer tBLG sample. The features in the Raman image correspond well with twisted bilayer domains identified with DF-TEM (θ is labeled for each domain in the TEM image]. Raman spectra for several domains are also shown.

Quality and Epitaxy of Bilayer Graphene

ARON Lab

Acknowledgements

- Sungkyunkwan Univeristy (SAINT@SKKU)
 - Prof. Sungjoo Lee

Korea University — Prof. Se-Jong Kahng

Samsung Advanced Institute of Technology (SAIT)
Dr. S. J. Park, Dr. H. S. Suh

- UNIST
 - Prof. Rodney S. Ruoff, Prof. Noejung Park

- Postech
 - Dr. U. D. Ham

Acknowledgements

Nano Electronics (STM Team)

Sangwoo Park, Seung Jun Jung, Taehwan Jeong, Hyunmin Kang

Nano Optics (SNOM Team) -

Minwoo Kim, Joo Hyun Lee, Hwi Jae Woo, Taegeun Yun, Haneul Kim

Graphene Synthesis & Applications

Qinke Wu, Dr. Winadda Wongwiriyapan, Qingshan Yang

Young Jae Song, <u>yjsong@skku.edu</u>

THANK YOU