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Kondo e�ect of an antidot in the integer quantum Hall regime:
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Abstract

An electron antidot system is an open geometry problem and often requires heavy calculations to compute its physical
properties. Such a di1culty can be avoided by transforming an electron antidot system to a system of hole quantum dot since
the transformed system contains only a 2nite number of con2ned holes. Using this transformation, we present a microscopic
approach to study electronic properties of an antidot in the integer quantum Hall regime. Based on this approach we discuss
various conditions under which the Kondo e�ect may be present.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A quantum antidot is a potential hill in two di-
mensional electron gas (2DEG) systems [1–8]. It can
be formed in GaAs/AlGaAs heterostructures by ap-
plying a gate potential or making an etched pit. In
zero magnetic 2eld, it is a simple repulsive potential
and acts as a scattering center for electrons. However,
when a strong magnetic 2eld is applied perpendicu-
lar to 2DEG, the antidot has its own electronic “edge”
structures, which correspond to classical skipping or-
bits around the antidot resulting from the Lorentz
force. When they are weakly coupled to extended edge
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channels along the boundary of 2DEG, these local-
ized antidot structures provide resonant states, giving
rise to Aharonov–Bohm oscillations of conductance
[3–8].

Electron–electron interactions may signi2cantly
a�ect the localized antidot states, as in the extended
edge channels [9–11]. Indeed, the charging e�ect
[3,4,6], h=(2e) Aharonov–Bohm oscillations [7], and
Kondo-like signatures [8], all of which cannot be un-
derstood within a single-particle picture, have been
observed in transport measurements of the antidot
systems. In spite of these experimental e�orts, there
have been few theoretical works to understand the
interaction e�ects. Very recently, a capacitive inter-
action model has been proposed [12] to explain the
experimental results. This model is analogous to the
constant interaction model of quantum dots [13]. In
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this model, the capacitive couplings between localized
excess charges, which are formed around the antidot
due to magnetic Lux quantization, result in Coulomb
blockade and nontrivial Aharonov–Bohm oscillations
with Kondo resonances. The predicted results are
in good qualitative agreement with the experimental
observations [7,8].

In this paper, we present a microscopic approach
to study the e�ect of electron–electron interactions in
antidots. In this approach, we map the electron antidot
system into a hole quantum dot system and perform
a Hartree–Fock calculation. We calculate, as a func-
tion of magnetic 2eld, the chemical potential for about
50 holes. We 2nd transitions between maximum den-
sity droplets [14–16], which may lead to Kondo res-
onances [17,18] in the electron antidot system. Types
of changes in many-body states depend on the shape
of the antidot potential. Although several hundreds of
holes are required to directly compare the result of the
Hartree–Fock calculation with those of the transport
measurements and the theoretical capacitive interac-
tion model, our results indicate that the Kondo e�ect
may exist in an antidot system with two localized edge
states.

2. Particle–hole transformation

Although there are many microscopic calculations
of quantum dots, to our knowledge, no microscopic
study of quantum antidots exists. It might be because
the electron antidot system is an open geometry and
requires heavy calculations. Such a di1culty can be
avoided by transforming an electron antidot system to
a hole quantum dot (see Fig. 1). Then the transformed
system contains only a 2nite number of con2ned holes
which makes it possible to perform a microscopic cal-
culation.

We 2rst describe our model for an isolated antidot
electron system, which is decoupled to the external
edge channels. Electrons reside in the xy plane and
a magnetic 2eld B = Bẑ is applied perpendicular
to the plane. For simplicity, we choose an antidot
potential V (r), which has a rotational symmetry
along the ẑ axis (the detailed shape of V (r) will be
mentioned later). Following the experimental setup
[7,8], we will assume that the antidot has only two
edge states with di�erent spins, which come from
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r

(b)

Fig. 1. (a) Schematic diagram of an antidot potential with a
circulating localized electron orbit (dashed arrow). The potential
will be transformed into a con2nement potential drawn in (b) by
a particle–hole mapping.

the lowest Landau-level. The Landau-level mixing
e�ects can be neglected when the Landau-level spac-
ing ˝!c (≡ ˝eB=m∗) is comparable to or larger than
the interaction energy scale of e2=lB and when the
antidot potential V (r) is su1ciently slowly vary-
ing (m∗ is the electron e�ective mass,  is the di-
electric constant, and lB ≡ √

˝=eB is the magnetic
length). In our calculation the Landau-level mixing
is ignored, and in a symmetric gauge the lowest
Landau-level single-particle antidot state �m�(r; �)
can be labeled by two quantum numbers, the or-
bital angular momentum m = 0; 1; 2; : : : and spin
index �= ↑; ↓. The single-particle energy of �m� is
em�=

(
1
2

)
˝!c+Vm+EZ� where Vm=〈�m�|V (r)|�m�〉

and EZ↑=− ( 1
2

)
g�BB (EZ↓=

(
1
2

)
g�BB) is the Zeeman

energy of spin-up(down) electrons. The wave func-
tion �m�(r; �) is centered at r = rm ≡ √

2(m+ 1)lB,
and has the width of lB.

The Hamiltonian of the many-body antidot states
can be written as

H =
∑
m�

em�c†m�cm�

+
∑

m1m2m′
1m

′
2�1�2

Um′
1m

′
2;m1m2c

†
m′

2�2
c†m′

1�1
cm1�1cm2�2

−
∑
m�

V ion
m c†m�cm�; (1)

where c†m� creates an electron in the single-particle
state �m� and Um′

1m
′
2;m1m2 is the matrix element de-

scribing Coulomb interaction; each element of U has
the half value of the corresponding element of the
Coulomb matrix. Whenever m′

1 + m′
2 �= m1 + m2,

Um′
1m

′
2;m1m2 is zero. The last term (V ion

m ) of Eq. (1) rep-
resents the interaction with the positive background.
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Since there are as many ions as spin-up and -down
electrons, one obtains V ion

m = 4
∑

m′ Umm′;mm′ .
The particle-hole transformation from the anti-

dot electron system into a hole quantum dot can
be achieved by the mapping [19] cm� → h†

m� and
c†m� → hm�, where h†

m� (hm�) is the hole creation
(annihilation) operator. Since the transformed sys-
tem con2nes a 2nite number N of holes, one can
use a cut-o� angular momentum mc 
 N . After the
mapping, the last term in Eq. (1) is transformed into

−
mc∑
m�

V ion
m c†m�cm� = 2

mc∑
m

VHm

(
−2 +

∑
�

h†
m�hm�

)
;

where VHm ≡ 2
∑mc

m′ Umm′;mm′ . The transformed total
hole Hamiltonian can be obtained as

Hh =
mc∑
m�

ẽm�h†
m�hm�

+
mc∑

m1m2m′
1m

′
2�1�2

Um′
1m

′
2;m1m2h

†
m2�2

h†
m1�1

hm′
1�1hm′

2�2

+
mc∑
m�

em� −
mc∑
m

(2VHm + VXm ); (2)

where VXm ≡ 2
∑mc

m′ Umm′;m′m and the e�ective sin-
gle hole energy is ẽm� = −em� + VXm . Note that the
Zeeman energy of holes has the opposite sign to that
of electrons. The constant terms in Hh will be ignored
hereafter.

3. Results and discussion

We choose a parabolic con2nement potential(
1
2

)
m∗!2

0r
2 for the hole quantum dot and put about

N � 50 holes into the dot. The potential energy of
the electronic state �m� is Vm = −�(m + 1), where
�=˝!c(!0=!c)2. For m∗ =0:067me, =10, g=0:44,
!0 = 1:5 meV, N = 48, and B ∼ 1 T, we 2nd that
the maximum-density droplet [14–16] is the exact
ground state of the hole Hamiltonian, Eq. (2). It can
be written as a single-Slater-determinant state

|N↓; N↑〉 = h†
(N↓−1)↓ · · · h†

0↓h
†
(N↑−1)↑ · · · h†

0↑|0〉: (3)

Here N� stands for the number of holes with spin �.
The total number of holes is N = N↑ + N↓, and N↓ is
equal to or larger than N↑ due to the Zeeman energy.
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Fig. 2. Chemical potential �N=48 of a hole quantum dot as a
function of magnetic 2eld B. Particles in the dot are con2ned in
the parabolic potential

( 1
2

)
m∗!2

0r
2. The dashed lines indicate the

values of B where the states |N↓; N↑〉 and |N↓ + 1; N↑ − 1〉 are
degenerate.

We have investigated how the many-body ground
states of the hole quantum dot change with varying
magnetic 2eld. Whenever the chemical potential sat-
is2es the normal resonance condition �N = EN+1 −
EN = EF, an extra hole tunnels into the quantum
dot. Here EN and EF are the ground state energy of
N -particle system and the Fermi energy, respectively.
At the normal resonance condition, a pair of states
with N and N + 1 holes, |N↓; N↑〉 and |N↓ + 1; N↑〉,
are degenerate and the ground state changes from
|N↓; N↑〉 to |N↓ +1; N↑〉 as the magnetic 2eld becomes
stronger [12].

In addition to the ground state transition at the nor-
mal resonance conditions, there can appear another
type of ground state transition, in which the total num-
ber N of holes does not vary and the ground state
|N↓; N↑〉 changes into either |N↓+1; N↑−1〉 or |N↓−1;
N↑ + 1〉 as the magnetic 2eld increases. This type of
transition accompanies a spin-Lip process, indicating
the possibility of the Kondo e�ect [20]. In the hole
quantum dot with the parabolic potential, this spin-Lip
ground state transitions occur following the sequence
|N↓; N↑〉 → |N↓ + 1; N↑ − 1〉 as B increases (see
Fig. 2).

In the case of the parabolic potential, both at the
spin-Lip transitions of the sequence |N↓; N↑〉→|N↓+1;
N↑ − 1〉 and at the normal resonance conditions,
the number of the spin-down holes becomes larger
and thus the hole spin polarization (˙ N↑ − N↓)
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decreases as B increases; note that decreasing hole spin
polarization is equivalent to increasing electron spin
polarization. However, this result does not match
those expected in the experiment [8] of large-size
realistic antidots and the results of the capacitive
interaction model [12]. In large-size antidots, it is nat-
urally expected that the spin polarization would show
a periodic oscillation with Aharonov–Bohm period
in a wide range of magnetic 2eld (at least in several
Aharonov–Bohm periods). Consistent with this ex-
pectation the capacitive interaction model predicts the
transition sequence of |N↓; N↑〉 → |N↓ − 1; N↑ + 1〉
with increasing B at the Kondo resonances.

The discrepancy may be due to the possibilities that
the inverse parabolic potential cannot describe the re-
alistic antidot potential and/or that the number N � 50
of holes is one-order smaller than the value expected
in the experimental situation. To test the former pos-
sibility, we also performed [12] the calculation for a
bell-shape antidot potential, which is more realistic,
and found the spin-Lip transition of the correct se-
quence with |N↓; N↑〉 → |N↓ − 1; N↑ + 1〉. The test of
the second possibility with much more holes is now
in progress. Finally, we remark that the realistic anti-
dot state may be either alternating compressible and
incompressible regions [9,15] or a maximum-density
droplet [14–16] of holes. This interesting issue may
also be solved in the calculation for the antidot system
with a realistic size.
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