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2. Introduction to Topological Insulators



Introduction to Topological Insulators
Phases

e solid, liquid, gas, glass




Introduction to Topological Insulators

Phases (cont.)

e paramagnetism, diamagnetism, ferromagnetism, antiferromagnetism
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e charge-density wave, Bose-Einstein condensates



Introduction to Topological Insulators

Phases (cont.)

o underlying principle for characterizing the state:
symmetry breaking and order parameter
e example: ferromagnetism
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breaking of the rotational symmetry of spins — finite magnetization m # 0



Introduction to Topological Insulators

Phases (cont.)

e Landau-Ginzburg theory (— phenomenological explanation of the phase transition):
expansion of the free energy with respect to the order parameter

<« order parameter can be very small near the phase transition
» high-temperature symmetric phase
= low-temperature, less-symmetric, symmetry-broken state
» first/second/- - - -order transitions: depending on the vanishing of the second, third,
- coefficient of the expansion of the free energy.

e major limitation of Landau-Ginzburg theory < local order parameter



Introduction to Topological Insulators
Topological States

o topology

Itustration: ©Jahan Jarmestad/The Royal Swedieh Academny of Sciences




Introduction to Topological Insulators

Topological States (cont.)

o phases of matter with topological order which cannot be described by a local order
parameter

» highly nonlocal order parameter
» no Landau-like theory can be established

e example: quantum Hall states, quantum spin Hall states

kQ

OH = N—

h
Here nis the number of “holes” or magnetic monopoles of the fictitious magnetic
field, so called the Berry field.

o topological phase = a phase of matter whose low-energy field theory is a topological
field theory, or the states with nonlocal order parameter
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Introduction to Topological Insulators
Practical Application of Topological Phase

e topological quantum computer: example of Majorana fermion

» quantum qubits, |0) and |1) = ¢ |0) defined by a single fermion
» single fermion operator (c) <> two Majorana fermion operators (1, 72)

7=c+c oo Yt
H 2

) ot = M= vz
72 =i(c' —c) 2

» how can the fermion ¢ be nontrivial?

1. 1 and ~, localize arbitrarily far apart from each other
— ¢ becomes a highly non-local operator
— the occupation of ¢ operator cannot be measured locally

1+ inye
fo—
cle=—5

— the fermionic state (|0) or |1)) cannot be disturbed by a local perturbation

— less susceptible to local decoherence processes

2. one can empty or fill the non-local state with no energy cost, resulting in a
ground-state degeneracy — non-Abelian statistics or braiding
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Introduction to Topological Insulators
Topological Band Theory

o Mostly, non-interacting fermionic systems

e existence of bulk invariant (usually an integer or a rational number or set of numbers)
that differentiates between phases of matter having the

o usually, but not always, topological states are associated with the existence of
gapless edge modes

note that topological phases can exist without the presence of gapless edge modes.
o topological band theory takes into account concepts such as Chern numbers and
Berry phases.

¢ in topological band theory, an important consideration is not only which symmetries
the states breaks, but which symmetries must be preserved to ensure the stability of

the topological state:



Introduction to Topological Insulators

Topological Band Theory (cont.)

e periodic table classifying the (non-interacting) topological insulators/superconductors

particle-hole symmetry
x

time-reversal symmetry |
x

N
IQHE
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ANd 1 2/ 3
polyacetylen 0 0 p+ip wave SC

Alll Z 0 Z
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QSHE CI

d+id wave SC

\.

considered symmetries: (1) time-reversal symmetry, (2) particle-hole symmetry
(charge conjugation), and (3) chiral symmetry

o for every discrete symmetry, there must exist topological insulating phases with
distinct physical properties and a topological number.
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Topological Band Theory (cont.)

Introduction to Topological Insulators

e identification of topological phase

>

trivial insulator = insulator that, upon slowly turning off the hopping elements
between orbitals on different sites, flows adiabatically into the atomic limit

in many cases, the nontrivial topology — presence of gapless edge states in the
energy spectrum of a system with boundaries

topological phase can theoretically exist without exhibiting gapless edge modes
— the energy spectrum alone (with or without boundaries) is insufficient to
determine the full topological character

— topological structure is encoded in the eigenstates

“entanglement” (depends only on the eigenstates) — topological nature

for example, topological entanglement entropy
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3. Berry Phase



Berry Phase
Berry Phase

e quantum adiabatic transport in slowly varying (electric, magnetic, strain) fields
— modification of the wave function by terms other than just the dynamical phase
= Berry phase

e adiabatic transport in Bloch-periodic systems — parameters (Bloch momenta k) are
varied in closed loops (bands or Fermi surfaces) by applying the electric field

e Here we derive the Berry phase for a particle obeying Hamiltonian evolution under a
set of slowly varying parameters
— the basis for defining a series of topological invariants (Chern numbers, 2,
invariants, etc)
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3. Berry Phase
3.1 General Formalism



Berry Phase General Formalism

Berry Phase, Berry Vector Potential

o general Hamiltonian #(R) = #(R(t)) for time-varying parameters
R= (/:?17 R27 R37 s ) where R,' = R,'(t)

¢ adiabatic evolution — R(¢) are varied very slowly (compared to other energy scales,
for example, gaps) along a (open or closed) path C in the parameter space

° , [n(R)) ateach R
H(R) [n(R)) = Ea(R) n(R)),  (n(R)|m(R)) = dnm (1)

e gauge in |n(R))
> |n(R)) is defined up to a phase (in the case of degenerate states, a matrix)

N
choice of a gauge — the phase of each basis function |n(R)) varies smoothly and
is single-valued along the path C
in some cases, a smooth and single-valued choice is not possible along a closed
path C
at least, smooth and single-valued gauges can be found piecewise in finite
neighborhoods of the parameter space.



Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

o — a system starting in an eigenstate |n(R(0))) stays as an
instantaneous eigenstate of the Hamiltonian |n(R(f))) throughout the process. BUT
what is the phase?

e Berry phase: time evolution of a wavefunction | (t)) of a system prepared in an
initial pure eigenstate |n(R(0)))

[(t)) = e # I8 EnREDE gl | (R 1)) 2)

t
1. conventional dynamical phase: %/ E.(R(t))dt’
0

2. Berry phase ~, for the state n

=i [ (R g In(R(E)) e @

Note that the Berry phase comes from the fact that |n(R(¢))) and |n(R(t + dt)))
are not identical

| TI-1: proof of Eq. (2) |




Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

| TI-1: proof of Eg. (2) |

Let 6(t) be the phase of the state | (t)) during the adiabatic evolution of the system so that

[ (1)) = e~""“ |n(R(1))) @)

Note that 6(t) cannot be zero because it must at least contain the dynamical factor related to the energy of the
eigenstate. By inserting Eq. (a) into the Schrddinger equation,

d
ih [p(1)) = H(R(1)) |4 (1))
one obtains the differential equation

hdo(t) o i6(0)

D=0 |n(R(e)) + ine "0

at
d@( ) [n(R(1))) + Ih d

In(R(1)) = e~ "1 (R(®)) In(R(1))
n(R(1))) = Ea(R(1)) [n(R(1)))

By taking the scalar product with (n(R(t))\,

hdf%“”’“ n(R (,))%m(a(m) = En(R(1))

By integrating over time ¢, the solution for 6(t) is

— & [ e i [ S inRe)

= dynamical phase ="n
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

¢ Berry connection or Berry vector potential A,(R)

7,7:/dR-A,,(R) with A,(R) = i (n(R)|Vg|n(R)) (@)
C

|TI—2: proof of Eq. (4) |

e Berry phase v, is real

Y= — Im/cdR‘ (n(R)|Vr|n(R)) (5)

TI-3: proof of Eq. (5) |
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-2: proof of Eq. (4)

Since

dR; dR
=V n(R)) - ——
ar In(R)) -+

d‘j’ [n(R(t)) = — [n(Ri(t"), Re(t'), - +)) = Z — \n(R))

the time can be removed explicitly from the equation
. L[t dR
o = :/ (R 2 1n(R(EY) o = i [ (nR)aln(R) - SE et

dat’
= i/c (n(R)| VaIn(R)) - dR
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

| TI-3: proof of Eq. (5)

Since (n(R)|n(R)) = 1, by differentiating with respect to R,

0= (Vnn(R)ln(R)> + (n(R)|Vg|n(R))
(n(R)|Vr|n(R)) = — (Van(R)|n(R)) = — (n(R)|Vr|n(R))"

Therefore, (n(R)| Vr|n(R)) is purely imaginary, or (n(R)|Vgr|n(R)) = ilm (n(R)|Vr|n(R)). So,

w,,://dn (n(R)| Vg|n(R Im/dR n(R)|Vg|n(R))

bk



Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

e 7, and A,(R) are gauge-dependent!
Under , In(R)) — €® |n(R)) with ¢(R) a smooth,
single-valued function,
An(R) — Aq(R) — Va((R) ©)
Yn = 7n + ¢(R(0)) — ¢(R(T))

where T is the (long) time after which the path C has been completed.

| TI-4: proof of Eq. (6) |

(note that the gauge dependence of A, is similar to that of the vector potential of the
“real” magnetic field)

e v, can be canceled by a smart choice of the gauge factor ((R)? No!
o for closed path C

¢(R(0)) = ¢(R(T)) =2mm (for an integer m) (7)

— the Berry phase cannot be canceled unless it is an integer itself.

| TI-5: proof of Eq. (7) |

For a path, the Berry phase is gauge-invariant quantity independent of the
specific form of how R varies in time.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-4: proof of Eq. (6)

Under the gauge transformation,

Ay — i (7™ (n(R)[) Va (¢“™ n(R)) )

= i(n(R)| Vr|n(R)) + i (n(R)|(iVr((R))In(R))
= An - VRC(R)

and
SN / dR - (Ax(R) — Va((R))
C
:wn—/cdnvﬂ((ﬂ)
= — (C(R(T)) - ¢(R(0)))
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-5: proof of Eq. (7)

For closed path C, after a long time T (period), we return to the original parameters:
R(0) = R(T)

(if R; is angle variable, R;(0) = R;(T) up to 2w m with an integer m). Since we have chosen our eigenstate basis
to be single-valued,

In(R(0))) = [n(R(T))) (@)
Gauge transformation should maintain this property, so
O n(R(0))) = “T |n(R(T))) (b)

From Egs. (a) and (b), we have

or

for integer m.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

o for three-dimensional parameter space R = (R, Rz, Rs) = (Rx, Ry, R;) and for a
closed path C

= — Im/ dS - (Van(R)| x [Van(R)) = / dS - Fo(R) (®)
S S
where S is an area enclosed by C and

Fi(R) = i ((V;n(R)|Vkn(R)) — (Vkn(R)|V;n(R))) ©)

is defined to be Berry curvature which is the curl of the Berry vector potential, that is,
a magnetic field in parameter space.

| TI-6: proof of Eq. (8) |

Note that the Berry curvature is gauge-independent:

Fr(R) — Vg x (An(R) — VRr((R)) = Vg x As(R) = F,(R)

e in this lecture, we consider only the case with closed path C and three-dimensional
parameter space, dim(R) = 3.
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Berry Phase General Formalism

Berry Phase, Berry Vector Potential (cont.)

TI-6: proof of Eq. (7)

Let S be the area enclosed by the closed path C. Then, according to Stokes’ theorem,
Yo =—1m / dR - (n(R)|Vg|n(R)) = — Im/ dS - V x (n(R)|Vg|n(R))
Je s

= — |m/; dS,-e,-jij (n(R)\Vk\n(R))

—Im /S dSiej ((V;n(R)|Vk|n(R)) + (n(R)|V;V«|n(R)))
Since €jx V;Vk = (V x V); = 0, the second term vanishes. So,
Y= — Im/ dSiejx (Vin(R)|Vkn(R)) = — Im/ dS - (Vern(R)| x |[Vrn(R))
s s

The curl of the Berry vector potential becomes

(V X An)i = e VjAm = € Vi (N(R)|Vin(R)) = ejpi (V;in(R)|Vin(R))
= el ({V;n(R)|Vkn(R)) — (Vin(R)|V;n(R)))

where no summation over j and k in the last line

o8



Berry Phase Gauge-Independent Computation of the Berry Phase

Outline

3. Berry Phase

3.2 Gauge-Independent Computation of the Berry Phase
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase

 the derivative of the eigenstates, Vg |n(R)) in the expression of the Berry phase
requires the gauge-smoothened eigenstates as functions of R

e numerical diagonalization algorithm of #(R) usually outputs eigenstates with wildly
(and randomly) different phase factors for different R

— a formula for the Berry phase that is gauge independent is demanded
e gauge-independent formula for the Berry phase

—/Sds-vn (10)

with

_ n(R)[VeH(R)|m(R)) x (m(R)|Ve#(R)|n(R))
Vo= [En(R) — Eo(R)] an

m#n

Here |n(R)) is assumed to be nondegenerate.

[ T1-7: proof of Eq. (10)

Since the derivatives have been moved from the wavefunction to the Hamiltonian,
the Berry curvature (or the Berry phase) can be evaluated under
it is no longer necessary to pick |n(R)) to be smooth and single-valued.
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

|TI—7: proof of Eq. (10) |

By introducing a complete set of eigenstates Y°,, |m(R)) (m(R)| = 1 at each R,
e (Vin(R)|Vkn(R)) = e > (V;n(R)|m(R)) (m(R)|Vkn(R))
= €ijk (g/"(R)In(R» (n(R)[Vkn(R)) + €jix mzn (V;n(R)|m(R)) (m(R)|V,n(R))
Note that (V;n(R)|n(R)) and (n(R)|Vxn(R)) are purely imaginary: ’

0=V, (n(R)|n(R)) = (V;n(R)In(R)) + (n(R)[V;n(R))
= (V;n(R)|n(R)) = — (n(R)|V;n(R)) = — (V;n(R)|n(R))"

Therefore, the first term is real and gives no contribution to the Berry phase (remember v, = — Im[- - - ]).
Hence,
= — Im/ dS; 3" e (V;n(R)|m(R)) (m(R)|Vkn(R)) (@)
S m#n

The derivative on the eigenstates can be removed in the following way:
En{m|Vn) = (MIVEy|n) = (m|V|Hn) = (m|(VH)|n) + (MHVn) = (m|(VH)|n) + En (MVN)
Hence, since E, # En form # n,
_ {mI(VH)|n)
bmivn = g —E,
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Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

Similarly,
(Vn|m) = 7<nl|:5an¢é|r”m>

By inserting the above two equations into Eq. (a),

(n(R)(V;H)Im(R)) (m(R)|(V«H)|n(R)) _
/ dsimS" e = A / dS; Vi

m=#n

kPl



Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

¢ two different equations for v,

Eq.8) — = f/ dS - Im (Vgn(R)| x |[Vrn(R))

R)|VrH(R R R)|VrRH(R R
o 101 7= 65 my (RITHEIME) < () ey

m#n

» Eq. (8): involves only |n(R)) and its derivative
» EQq. (10): involves the interaction between |n(R)) and |m(R) # n) that have been
projected out by the adiabatic interaction

e vanishing sum of the Berry phase

Y m=0 (12)

n

| TI-8: proof of Eq. (12) |

e d-degenerate levels
— the Berry vector potential becomes a matrix of dimension d
— non-Abelian

k]



Berry Phase Gauge-Independent Computation of the Berry Phase

Another Formula for Berry Phase (cont.)

TI-8: proof of Eq. (12)

Using Eq. (10)

n#m
[T (n(R) VRH(R)M(R) x (m(R)| VaH(R)In(R))
2= Jes 2 [En(R) — EA(R)?

For any pair of (n, m),
(n(R)VrH(R)|m(R)) x (m(R)|VrH(R)|n(R)) + (n > m)
[En(R) — Eq(R)]2 ,
n(R)| VrH(R)|m(R)) x (m(R)|Vr#(R)|n(R)) + (complex conjugate)
[Em(R) — En(R)I?

Im

:Im<

=0
Hence, >, v» = 0.
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Berry Phase Degeneracies and Level Crossing

Outline

3. Berry Phase

3.3 Degeneracies and Level Crossing
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Berry Phase Degeneracies and Level Crossing

Level Crossing

e Berry phase — classification of degeneracies

¢ at a degenerate point or level crossing (En(R) = En(R)) at R = R, v, and ym
diverge — R* = a monopole in the parameter space

e here, the value of the Berry curvature at the degenerate point is not of our interest,
but instead its structure around the degenerate point is to be examined, which
determines the Berry phase.

e generic degeneracy point at the intersection (at R*) of two levels as R is varies
— two-level systems

» two states |+(R)) with energy E+(R)
> Vi(R) = ~V_(R) and 7, = —7-
e generic form of two-level (or two-band) Hamiltonian

#H = ¢(R)oo + d(R) - & (13)

where o; are Pauli matrices (i = 1,2, 3) and d(R) is a 3D vector depending on R
E: = ¢(R) % |d(R)|

¢(R) is just an additive term in energy and does not affect the eigenstates, being
safely neglected.

examples: graphene, spin-orbit coupled systems, Bogoliubov quasiparticles,
spin-3 electron in a magnetic field

>

>
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature

e parameterization by spherical coordinates
d(R) =d(|d|, 0, ¢) = |d|(sin b cos ¢, sin b sin ¢, cos H) (14)

e eigenvalues: E1 = £|d|
e eigenstates: at a choice of gauge (gauge 1)

e ?sin? e '*cos ¢
|-(R)) = { oo [H(R)) = { . 2] (15)
—CoS 35 sin 5
or, at a different choice of gauge (gauge 2) (by xe*'®)
sin ¢ cos 2
—(R)) = o2 s +(R)) = . 2 16
~(R)) [em, st|t A L*"” . g] (16)

TI-9: proof of Eq. (15) |
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

| TI-9: proof of Eq. (15) |

cos 6 sin 6 cos ¢ — isin 6sin ¢ cos® e ?sing
HR) = |d| | . i i =1l vig &
sin 6 cos ¢ + isin 6 sin ¢ —cos @ e""?sinf® —cosb

The eigenvalues E are obtained from the secular equation
0 = (|d|cos 6 — E)(—|d|cos 6 — E) — |d|®sin0 = E2 — |d]? — E=+|d|
For E = +|d|, the eigenstate satisfies

_ —id gi
0:(H7|d\)[2]:\d\ |:cost9 1 e sme}[w}

e"?sing —cosf — 1

—sin? @ ~i% gin € cos & —it gog @
o | oSE ePsingoosgl vl v feT?cos
e"®sinfcos§  —cos?§ Vo vo sin §

For E = —|d|, the eigenstate satisfies
Vi
Vo
—

Vi cosf+1 e ®sing
0= (H d = |d )
(7 +1dD) |:V2:| ldl [e*"i’sine —cosf + 1

2 0 —i¢ qin 6 ‘)
Cos™ 5 e Sin 5 COS 5 V;
- z‘d‘ |: 2 2 2:| |: 1:|

+id i O 0 s 26
e*'?sin § cos § sin® §

9



Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

o Berry vector potentials Ay and A, and Berry curvature Fy4 for level |—(R))

1. gauge 1

Ap =0, Ay =+sin? g Fop = 0gAg — 9yAs = ? (17)
2. gauge 2

Ap =0, Ay = —cos? g Foyp = OgAg — 9yA0 = ? (18)

Note that while the Berry vector potential is gauge-dependent, the Berry curvature is
gauge-independent.

|TI—10: proof of Egs. (17) and (18)
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

TI-10: proof of Egs. (17) and (18)

For gauge 1,
) 1 i¢ 9
Ag =i (~(R)|dg| — (R)) = i [¢"/%sin § —cos § ]E[ Smcgs }:o
. e~ sin § P
A¢:i<*(R)\8¢\*(R)>:/[e+’¢sin9 —cos § [ e " sin }:sng
1 0 0 sin 0
Foy = O9Ay — DsAg = ~2sin = cos = =
0 0 Ap » Ao 23|n2c052 2
For gauge 2,
s 1| cos§
Ay =i (~(R)|05| — (R)) = i[sin§ —e~cosg] | 502, | =
Ay =i (~(R)|9y| — (R)) =i [sin § —e~'* cos §] 0 — —cos??
¢ =i(—(R)|9y| — (R)) =i|sin§ —e '"?cos § 16+ cos 5
sin

1 6 6 ino
Fou = OpAs — OsAs — —12cos 2 (—sin2) =
0p = 0gAp — 0pAs > C082< sm2) >

40



Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

o the wavefunction |—(R)) is not well defined if the system reach, in its adiabatic
evolution,

1. gauge 1: the south pole (6 = =),

2. gauge 2: the north pole (8 = 0)

sin & 0
=) = {—e*’l‘”czos g} - [—e*"’l

note that ¢ cannot be defined at 8 = 0 and .

— In nontrivial cases, one cannot pick a gauge that is everywhere well defined. It is
extremely important in the Chern insulator: if we are able to find a gauge in which all
wavefunctions are well defined, then the system cannot have nonzero Hall
conductance.

a1



Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

e For general d(R), (assuming |d| is fixed)
(0, ¢) 19(cosb,¢) _ 10(¢,cos0) (19)

. a0,¢) 1 _ 1
Fi=Foogtm Ay = 25" 3R, R) = 2 0(R.R) 2 O(R,R)

a0, 9) A oA
where the Jacobian is defined as —=>-- = det Z’Z Z’Z
a(Ri7 F?]) 3R,’ TRJ
e Ford(R) =R,
1R
V_ = RCY-The -V, (20)

|TI—1 1: proof of Eg. (20)
» degenerate point at R = 0 — field generated by a monopole (in R parameter

space) of strength +1/2 for band |+(R))
» degenerate point = sources and drains of the Berry curvature
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

» example: integration of the Berry curvature over a sphere S containing the
monopoles,

,Yn:_/ds.v_:1><47rn:27rn (21)
s 2

where n is the number of monopoles inside the surface S — Chern number.
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Berry Curvature (cont.)

[ T1-11: proof of Eq. (20)

Ford(R) =R,
|d|(sin 6 cos ¢, sin 6 sin ¢, cos 8) = (R, Rz, R3)
S0
R R R.
cosf=-—2=___"3  and q&:tanq—2
R R2 + R2 + R2 Ry
Using
dcos®  RsRy  Ocos®  RsR.  dcos® 1 R: R+ RE
oRy  R®’ OR.  R®’ OHRs R R R
9¢  —Re/RE R, o¢ _ 1/Ry Ry 9¢
ORy 1+ (R/R)2 R2+R} ORe 1+(Re/Ri)2 RP+RZ ORy
one obtains
10 o 1 |lZm o© 1R
7V71:F23:7M:7det Rtk =22
2 0(Rz, Rs) 2 RgRy R{+AS5 2 R3
L~ A3 A3
F o Ry
19(¢,cos6) 1 T R2+R2 1R,
—V o=Fyy=-——"2""" — _det 1T = 2
2T T 2 9(Rs, A1) 2 AR Ay 2R
L RS TR
A Ry 5 5
1 9(¢, cos ) 1 R RiR2 1 R5Rs + R{ARs 1R;
—V_3=Fp=_-—2—F- = —det > M —_28TH’8s _ B
2 9(R1,Ry) 2 _ 3;1 _9332 2 H3(R12 + ng) 2 R
L R
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach

° approach, Eq. (10) — Vr#H is needed
o without loss of generality, by neglecting ¢(R)
H(R)=d(R) - o (22)

with the degeneracy point at R* = 0 (and d(R*) = 0). Near the degenerate point,
under an extra rotation, the Hamiltonian is linearized so that

d(R)=R near R — VRH =0 (23)

and the eigenvalues are EL = +R.
e Berry curvature for |[+(R))

—_

Vi(R) = (24)

1R
2 R

|TI—12: proof of Eq. (24) |

e Berry phase

e = - /S dS-Vi(R) — explins(C)] = exp {x%mw)} (25)

where Q(C) is the solid angle that the surface S subtends at the degeneracy points.

45



Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach (cont.)

TI-12: proof of Eq. (24)

For easier calculation, we rotate the axes so that the z-axis points along R. Then,
H(R) = Ro;
so that the eigenstates are |+) which are the eigenstates of 0;: o, |£) = £ |£). Note that o |+) = |F) and
oy |£) = £i|F). In this basis, from Eq. (10)
_ (n(R)| Ve (R)|m(R)) x (m(R)|Vr#(R)|n(R))
Vo=Im>"
p [En(R) — En(R)PP

one immediately knows that V,, = V,, = 0 because they involves the terms (—|o;|+) = 0. The remaining
term is then

o (oI (=loy 1) = oy =) (—lowl+) _ | i= (=) _ R

V+z

[E_(R) — E, (R)? 4Rz 2R°
By rotating the system back in the original direction, the rotational invariance implies
1R
V. (R)

T2
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Berry Phase Degeneracies and Level Crossing

Two-Level Systems Using the Hamiltonian Approach (cont.)

e example: Dirac fermion (and Weyl fermion as well)

»

Hamiltonian
H=KkK o (26)

where K is the lattice momenta varying across the Brillouin zone.

what happens to the wavefunction of a Dirac fermion as it is transported around a
path C in momentum space — acquire the Berry phase $%Q(C).

2D Dirac fermion — a closed path with k; =0

Q(C) = 2w, ifthe cyrve encircles the degeneracy o e _ -1
0, otherwise +1
(27)

The Berry phase of the eigenstate of a gapless Dirac fermion in two dimensions
have a Berry phase equal to = upon going around the Fermi surface.
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Hall Conductance and Chern Numbers
Outline

4. Hall Conductance and Chern Numbers
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Hall Conductance and Chern Numbers
Berry Phase

o Berry phase/curvature in solid-state physics < dimension, band structure

e Berry phase = integral of the Berry potential over a closed curve — 1D manifold

1. filled bands (insulators) in 1D — —% < k < (= —Z) (a lattice spacing)
2. Fermi surfaces of 2D metals

e Berry phase = surface integral of the Berry curvature (2-form) — 2D manifold

1. filled bands (insulators) in 2D — full 2D Brillouin zone (BZ)
2. Fermi surfaces of 3D metals — Chern number

e oObjective

> Hall conductance of the 2D insulator
the integral of the Berry curvature over the full BZ
Chern number

e 1

with

0A/(K)  9AK)

FXY(k) = akx aky

and Ak)=—i > (ak|Vi|ak) (29)

acfilled bands
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Hall Conductance and Chern Numbers Current Operators

Outline

4. Hall Conductance and Chern Numbers
4.1 Current Operators
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model

e electrical current density in classical mechanics
Je(r) = en(r)v(r) (30)

where n(r) and v are number density and velocity of electrons.
o electrical current density operator in quantum mechanics

Jo(r) = g D7 Vid(r = 1) + 3(r = r)vi] = ed(r) (31)

» r; and v; = dr;/dt are position and velocity operators of particle i
» in quantum mechanics, position and velocity operators do not commute
— symmetrization
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

e current density operator in the presence of electromagnetic field

1 e e
) = 5 Z [(p,- — ZAr, t)) S(r— 1) +o(r—r) (p, — ZA(r, t))]
i S A0 %)
=10) = g DA D3(r )
where A(r, t) is the vector potential.
» paramagnetic contribution (proportional to external field)
. 1
in=z- > pis(r—r) +6(r—r;)p)] (33)
» diamagnetic contribution (proportional to external field)
; 2
e __impe
—%noA(r, ) — Jde(r,t)= oy E(r, t) (34)

where g is the uniform number density of charges.

| TI-13: proof of Eq. (32) |
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

TI-13: proof of Eq. (32)

In the presence of electromagnetic field, the Hamiltonian reads
1 e
H:Z% (ping(r/'» ) +Ze§0(rh +Z‘/I/ rlsr/
i i<j

where Vj is electron-electron the interaction between particles. Then the velocity operator is given by (for
5=X,Y,2)

dar; i 1 e 2
ve = 2% = L, = —[(p,-s - EAs(r,-,t)> 1]

i
h2

1
m

1

7(15— —As(rj, ))

m

e
- Sa, )) [Pie: ] + [P 7] (p,-s ~ Cagn, t))
HH H/—’ c

%]



Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

o external time-dependent external electric field

E(r,t) = E€@"+D (35)
From
E:fVLpf% and B=V xA (36)
and under the assumption that the electric field and vector potential are transverse,
_Er0

p(r,t)=0 and A(r,1t) (37)

lw

e Hamiltonian in terms of current operator

H=Ho - g/dsr/éA(r, ) - J(r) (38)

where H, is the Hamiltonian in the absence of electromagnetic field.

| TI-14: proof of Eq. (38) |

o weak electromagnetic field: up to the linear order in A(r, t)
H=Ho— g/dSrA(r, £)-(F) = Ho + Hex (39)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Continuum Model (cont.)

TI-14: proof of Eq. (38)

2
H=Ho+ zi |:p,-~ <—§A(r,-, t)) n <—§A(r,-, t)) it %Az(r,-, 1)}
=y 2 [Fro- S [p, A)3(r — 1) + A3 — 1) By — SA(r 03(r — )]

— Mo — 7/d3 /6A ) [p,&(r 1)+ 6(r — r;)p;72§A(r, 1)s(r — r,)]

_’Hof—/d3 /6A ) [(p,f—A(r t)) S(r—r)+8(r—r) <p;72A(r,t))]
:Hg—E/d3 /5A (r, 1) - J(r)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model

e non-interacting tight-binding Hamiltonian

H= Z Z Cia h// Bclﬁ (40)

> I, j (or r;): lattice indices (sites) on arbitrary dimensional lattice — total N sites
a, B: orbital/spin indices — total M orbitals — M bands

> h;/.w o h;/.lﬁ: zero chemical potential

> translational symmetry

hg? = h (41)
e Fourier transform:
1 —iK-r; Ik r
Ca=—) e ™ic, and Co=— " Ckar (42)
Lo and au= g3
%

H=>_D auh’os (43)

k apB

TI-15: proof of Eq. (43) |
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-15: proof of Eq. (43)

(RO LIRS HIE DR WS THMLALY

i op i ap K
-y, (NZh) cqﬁ
k ap q
_ 1 H@—K)R g—i(@Hk)1/2 pors o r o _p_"t
;;ﬂ;cka< ; e hy )Cqﬁ (r/7R+2,l‘/fR 2)
=22 > ¢ <5kq e rhaﬁ) cas (- 1N > =)
K aB q R
XS (St
k ap r
=hn?

Rr7



Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

o density operator in tight-binding model

pi(t) = Zc Ca — pqt chaCkJrqa (44)

TI-16: proof of Eq. (44) |

e current operator from the continuity equation

q-ja= ﬁT Z Z(hk a2~ k+q/2)ClIfq/2aCk+q/2B (45)

[T1-17: proof of Eq. (45) |

e small g limit
» low-energy and long-wavelength fields are more relevant in practical experiment
» this approximation is valid as long as the field variation is larger than several lattice
spacings
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-16: proof of Eq. (44)

The Fourier transform of the density operator is (omitting the summation over the orbital indices)
1 —ia-r; ot
pa = —= > e 4l c,
VN £
1 _iqer; 1 _iker; i 1 ip-r;
= — e F— e ey, —F= etlig
AR A e
1 1 i
T i(p—k—q)-r;
oy DI Sl
\/N kp “ N i
1
i
= —— > ¢l Coadpkiq
VNG

]

:

=—=> "¢ ouga
VN 4~

e}



Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

| TI-17: proof of Eq. (45)

The current satisfies
9p(r, t)
ot
By expressing the density and current in terms of their Fourier components,

+V -j(r,t) = 0.

:0pq

lq r Iq r _ lq r
mfz pat V- fz o = fz (e viacia) = ada=ige
Now we compute the time derivative of the density operator

d i 1
# = —[H,pal = [chka k Q(B»ﬁgg":/alck/ma/]

Using [¢] cz, ¢} ea] = ¢ [c2, cfcal + [cf , el calee = cf {2, el Yes — cl{c], ca}eo = 6asc{ cs — S14¢] ca, One
obtains
BPq
= Z Z h (5k,k'5[fa’cli—ack’+qa’ — 6k,k’+q§o¢o¢’czlaquf)
Kkk! aBa’

: Z SR (e = gn)

\f a Z Z(haﬁ - hlirq ckaQ(+q5

k ap
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont

)

Therefore,

11
~'=—7—§ § hef — nePyal o =—7—§
q-Jq h VN % aﬁ(k hetq) Cke Cicras h VN

—_
-y

where in the last step we have shifted k — k — q/2.

A1

(h

o
k—q/2

o3
hk+q/2

)szq/za Cic+a/28



Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

e current operator in small g limit

one’ .
lq \/*Z IRk k q/gack+q/2ﬂ (46)

TI-18: proof of Eq. (46) |
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

TI-18: proof of Eq. (46)

By expanding with respect to q,

B B o= 1 -~ q L

hqu/thuq/z:Z; -5 V| K- 5 Vk hy
n=0
8 LY

hk
=~k a4+ 0(q°)

Note that no even-power terms remain. Therefore,

o
T ) DR Ho S RIS
f ok q/2c q

aff
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

e Peierls substitution: minimal coupling of the vector potential in the tight-binding
model

h;fﬁ: hopping strength coming from overlap integrals between the atomic orbitals
of neighboring atoms

in the presence of electromagnetic field, p — p — £A in the continuum Hamiltonian
the minimal coupling changes the phase of every hopping matrix element in the
following way

>

(e (e ie [N
h,-jﬁ - h,-jﬁexp {/10 /r dr - A(r) (47)

taking the shortest path, that is, a straight line connecting two sites and assuming
that the vector potential does not vary wildly over a few lattice sites

/dr A(r) ~ (5= 1) - A(

fi

ri -‘r I t) (48)

TI-19: proof of Eq. (47) |
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

[ T1-19: proof of Eq. (47)

First, we consider the continuum model with the Hamiltonian
1 e 2 1 e 2
Hz—(pffA(r)) + - —(ihVJrfA(r)) +

~ 2m

Now we introduce a gauge transformation for wavefunction «(r):

v = ep |1 [Tar - aw)]

Since

(ihV+ §A> exp [ / ar' - A(r } 10 [ / ar' - A(r) ] (ihV+(ih) x éSAJr SA) &' (1)
[ / ar’ - A(r ] inv ' (r)

one obtains

Hyp(r) = {;—m (ihV ¥ SA)Z +- } P(r)

= exp [;—i/rdr’~A(r/)} [_:T;V2+"}w’(r)

It implies that the effect of the vector potential can be moved into the additional phase of the wave function. After
the gauge transformation, the Hamiltonian turns back to that (#,) without the field.
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

Now we discretize the operators in order to construct the tight-binding Hamiltonian:

o= [ 12 [Mar - aw)]| Hovi
_ ie fi / / ) 7
=exp [% ar’ - A(r )] Zh Y]
ie / i ’ /
:exp[%/ ar’ - r)]Zhl/ exp[ c/ dr-A(r)}zp,
h

where

0 ie fi
hy = hy” exp |:h—c/rj ar’ - A(r')
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

o weak electromagnetic field: up to the linear order in A(r, t)
» second order — A-term (diamagnetic term)

» the contribution from the diamagnetic term is diagonal in the spatial indices, which is
irrelevant to the Hall conductance

H = HO + Hext (49)
with

How= =23 ica- Ag(l) (50)
q

Note that this expression is same as that for the continuum model, Eq. (39).
| TI-20: proof of Eq. (49)
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

| TI-20: proof of Eq. (49)

Up to the linear order in A(r, t),

aB (v[‘)‘ e ie [t ., ,
hj exp{ / ar’ - }Nhij <1+%/rj dr-A(r))
8 ritr
= h:jl ( =+ thA( > /,[) . (I’,' — r,))
Then, the Hamiltonian change due to the field is then

Ie r+|"
How =D > clhj” AL 0)- (n —h)gjs

i aB

Noting the translational invariance of the Hamiltonian, we have h; = h;_; = hy and r; — r; = r. So,

1 —iker; ~g i€ ri+t 1 ip-r
Hex‘:ZZ<TZe kr"’lL) h,j%A(T’,t).(r,-—rj) (\m;ep"’pﬁ>

i ap )
iK-(r; e r
ISR S R
kp ap
_ ie 2
fzzckacpﬁfzw Rt IR
kp ap
. 1 1 .
(p—k+q)-r; A i(q/2—Kk)-r paB
= Zchacpg =S¢ I) <7—Z/re h >~Aq(t)
€ pa op (N i hVN %
—_—
= pk—q
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Hall Conductance and Chern Numbers Current Operators

Current Operator in Tight-Binding Model (cont.)

_¢ t 1.1 1 oi(@/2—K) -1 po B
= Ezzckaqkqﬂ gﬁzr:’re he? | - Aq(t)

kg apB

By shiftingk — k + q/2,

e 1 1 i
Hext = —— —— cl _ — —ir)e ™ TheB ) LAg(t
ext C\/N - azﬁ k+q/2ack q/28 (EZ( ) r q()
B
_ ohy
Ohk

e 1 ane?
== | = 22 5 GraszaOc—ases | - Aalt)
¢4 (mw ORk k+a/2a

= =23 i Aqlt)
q

(e}



Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Outline

4. Hall Conductance and Chern Numbers

4.2 Linear Response Theory, Green’s Functions, and Conductivity
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory

o setup for linear response theory
H(t) = Ho + Hex(l) (51)
» unperturbed Hamiltonian Ho
» weak time-dependent perturbation Hex(t) turnedonatt =ty
» the perturbation is weak enough that the system is still in (local) —

equilibrium statistical mechanics
— density matrix operator

o) = %e—am(t)—w) (52)

here we set . = 0.
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

o perturbation to density matrix due to Hex, up to the linear order in Hex,

p(t) = po + dp(t) (53)

where pg is the unperturbed density matrix when H = H,. In the interaction picture
with respect to H or in the Heisenberg picture with respect to H,,

-
o(t) = 1 / o [po, Hew (£ — 1)) (54)

[ T1-21: proof of Eq. (54) |

e change in (B(t)) due to the perturbation

it
5(B(0) = 5 [ o ([Healt), B (55)

where the Heisenberg picture with respect to the unperturbed Hamiltonian H, is
used.

[T1-22: proof of Eq. (55) |
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

[ T1-21: proof of Eq. (54)

Here we use the interaction picture:
pit) = efi o' p(t)e™ 7 Mo

(compare to the Heisenberg picture, Oy/(t) = e ™ oe™ %7'“). From the von Neumann equation,

ap(t) i
T _E[Hv p(D)]-

Then, the time derivative of the density matrix in the interaction picture is given by

90i(8) _ é (e%”o’ﬂop(t)e’%"o’ - e%ﬂo'p(t)ﬂoe’%”°’> + e%”o’—aggo e 7 Mot

ot
i i i i
= S eh 0! Hg, p(n)]e” K0! — —eR Mol [ay(t), p(t)]e” 1 !

" ‘
= e MO ae (1), (b)) F MO

Since

9 po i 9po,i
= =0= >
ot E[HO’ po) ETER
the time derivative of the perturbation §p(t) is, up to the linear order in Hey,
Adpy(t Adp(t i i _ i
g;() N gr( - — 5@ O [He(D). po + Sp(D)e” T TO!

£

i _ i i i _ i i
= 75957{0?[%&“(0,00]9 i Mol gen%’ [Heu(1), Sp(1)] @~ 770! =4 [ (1), pol
—_————

~ O(fol)
0



Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

By integrating over time and using the fact that H.x is turned on at t = t,

i t
sot) =~ [ el o). o
0

or
_ i i i t _ i i
6p(t) = & T 5pi(t)en ™! = —— [t &™ H MO [atey (1), pole o'
5]

. . .

= [ dt'[po, & B0 R ()6 01
h o
i t ! /

= [ dt'[po, Hews(t' = 1)]
h o

where we have used
_ i A _ i A 4 _ i s
e ﬁHOrHeXL,(t')ehHOt — e~ nHoler Mol gy, o~ 7 ol g% Hot
i ’_ _ i /_
_ ehHU(' [)Hexle £ Holt' =1
/
= Hexl,l(t - t)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

|TI—22: proof of Eq. (55)

Let 6 (B(t)) = (B(t)) — (B),, where (B(t)) = Tr[p(t)B] and (B), = Tr[poB]. Then,
5 (B(t) = </'B(t)r> — (B)o = Ttl(p(t) — po)B] = Tr[5p(t) B]
= 5o o T o Mo~ 018)
Using
Tr{[A, BIC} = T[ABC — BAC] = Tr[ABC — ACB] = Tr{ A[B, C]}
one obtains (using the fact po and #, commute with each other and Tr[AB] = Tr[B.A])
T {[po, Hexe, (t = 1B} = T { po[Hex,i(t' — 1), BI}
—T {po[e*T’l”ofﬂm,,(t’)e?’iﬂof, B]}

=Tr {po (e*ﬁ’”O'ﬂm,,(t’)e%”ﬂ’B - Be*%”ﬂ’ﬂm,,(ﬂ)e%%‘) }
=T {po (Hexl’,(t’)eﬁﬂofge*é’*o‘ - e%“o'sefﬁ”o’?—[m,,(t’o }
=Tt {po[Hexwi(t'), Bi(1)] }
Now we returns back to the Heisenberg picture with respect to Ho. Then, A,(t) = Ay(t) = A(t), so
i t ’ / I t ’ !
5(B(0) = 1 [ o T {pmlHan(t). BOL} = 1 [ ([Heult). B
N h %

where the subscript 0 means that the expectation value is calculated with respect to the density matrix for the
unperturbed Hamiltonian H,.
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

e linear response and retarded Green'’s function: suppose that the perturbation is
coupled to the system by the operator A'(t)
» for Heu(t) = AT(D)A(D),
1 e / / /
5 (B(1)) = ﬁ/ dt’ GEu(t.¢)h(t) (56)

where G2 4 is the retarded Green'’s function defined by

Gha(tt') = —ie(t - 1) (B, A'(D)]),. (57)
» for Heu(t) = [ ®r AT(r, t)h(r, 1),
5 (B(F, 1)) = % /_ Z ot / @3 G (et P YR, ) (58)
with
GRA(rt,Y't) = —i0(t — 1) ([B(r.0, A, 1)) . (59)

T1-23: proof of Eq. (56) |
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Linear Response Theory (cont.)

TI-23: proof of Eq. (56)

Since Hex(t) = AT ()(1),
5UB) = + / o' ([He(t'), B(O])g / o’ (LAT(t)(t'), B

By taking the limit {y — —oo,
sy =1 [ (A =5 [ aret— 1) (<iqB0. A CD,) )
=2 /j; o' (—ie(t — ) (1B(1), AT(t)])o ) (Y

=Gaatt)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Current-current Correlation Function

o perturbation due to weak electromagnetic field

How = — /dSrA(r £ -ir.t) = —*ZAq ) i-q (60)

In case of E(r, t) = E€'@"—+,

E(r, t E
A(r,t) = % or Aq(t)=iaq (61)

e current response with respect to the perturbation: with s, 8" = x, y, z,
(s(r, 1)) = —%/ at’ /dsr’Dss, —r t—t)Ag(r, 1) (62)
with the retarded Green’s function (or current-current correlation function)

DE(r—r,t—t) = —i0t) (is(r, 1), js (', )])g (63)

where we have assumed that the system has translational symmetry and H, is
time-independent so that D depends only on the differences, r —r’ and t — t'.

| TI-24: proof of Eq. (62)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Current-current Correlation Function (cont.)

TI-24: proof of Eq. (62)

According to the linear response theory
Gt = 3 [ at [ (<1000 (1alr. 0.4 (1) (- At )]
= /_ T / &’ (=i0(t) (lis(r, 1), jor (F', 1')])g) Asr (1, 1)

R
ss’

=D

79



Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions

for simplicity, time translational symmetry is assumed
retarded Green’s function

G (t) = —ie(t) (LA(t), B(0)]+) (64)
time-ordered Green'’s function
G'(t) = —i (TLA(H)B(0)) = —i [6(t) (A(1)B(0)) T ©(—t) (B(0)A(t)]  (65)

where the upper/lower sign corresponds to fermionic/bosonic operators
two correlation functions

J1(w):/oo dte™' (A(t)B —2mz " (n|BIm) (m|A|n) 6(En — En + )
Jao(w) = / dt € (B(0)A _27rhz " (n|B|m) (m|Aln) §(Em — En+ hw)
=e " U(w)

(66)

where |m), |n) are eigenstates of H, so that Ho |n) = E, |n).

| TI-25: proof of Eq. (66) |
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

| TI-25: proof of Eq. (66)

Using the completeness > |m) (m| = 1
Ji(1) = (A(1)B(0)
=Tr ﬂe%HO[Ae_%HO'B
Z
=3 (B2 eh Mol ae™ 7 0! )

n
—BH i _ i
= S (nIBEZE0 | my (m]et Mol ae™ h Mol )
nm

—BEm
=" (niBIm) S—— e EmED (m| A|n)
Z
nm
Then, the Fourier transform over the time t is

Ji(w) = /x’ dt €U (1)
e BEm
(

:Z B

nm
Ze*ﬁ”=_m<
=2rh

" nm z

oo .
n|B|m) (m\A|n)/ dt gt (Em=En)/n)t

oo

n|BImY (m|Aln) 5(Em — En + hw) [ /jo %e’“’ = 5(w)]
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

Similarly,
b(t) = <3(0)A(T)>
= Z (n| &2 3| m) (m|et Mot Ae~ # Mol |n)
=3 T oiim) o En - (Al
and

—BE
:271'?12 e

e~ —B( Em+hw)
= 271'7‘12 (n|B|m) (m|.A|n) §(Em — En + hw)

Jg(w):/jc dt €y (1)
" (n|BIm) (m|Aln) 6(Em — En + hw)

- e )
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

e at zero temperature, e °Em / Z = 6, , where E; is the ground-state energy
Ji(w) = ZWEZ (m|B|0) (O|A|m) 6(Ep — Em + hw) —  Ji(w<0)=0
m
Jo(w) = 27xh Y (0|B|m) (m|A|0) 6(Em — Eo + hw) =  Jo(w >0) =0
m
o B= A" — J;2(w) are real: since (n|B|m) = (n|AT|m) = (m|A|n)*,

[(m|A|n)[* 6(Em — En + hw)

e G(w) and G'(w) in terms of J;(w)

gﬁ(w) _ © du' 1+ e B
Lo 2T w— W +in

t,n [ du 1 e ! )
g(w)—/ﬂm 27 wfw/+i77:tw7w’fi17 S(w)

Ji(w')  with n=0"

(67)

(69)

TI-26: proof of Eq. (69)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

|TI—26: proof of Eq. (69)

Gh(1) = —ie(t) (U (1) — (1))
G'(t) = —i [O(t) (£) + ©(—t)da(1)]
Using

e(t) B /OQ dw efiwf
- oo 2mi w + in

one can Fourier transform the Green’s function as

0o X oo X 0o " —iw!t oo ’ Ly
gR(w) :/ dte’ng(Z‘) _ / dt e/t ( dzo.; e . ) die*’“’ t(J1(w,) 4 Jg(w/))

— oo w' +in Coo 27

dw oo /,1ﬂ:e’”‘“’ )/ at /

7er(w—w —w!Mt
2

oo
e w// + IT]

=6w—-w —w")
= dw' 1+ e fM

= (W)

oo 2T w—w +in
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

Similarly,

g’(w)=/ dtei“’tgt(t)
o . o dw' o dw'! —iw!'t o dw'! iw’t
= [T [T G e ©of )T Yo e ) )
Lo L oo 2T Coo 2T w4 in Coo 2T w4 in

_ Bhw'
. / dw” w/,+m " gl E - A et Ji(w')

27r w" +in J_o 27
N—— —ee
=§(w—-w —w") =6(w—w +w")

—Bhw'

> dw’ 1 e
:/ d _ 4 _ ) sy
oo 2T \w—w +in  w—w —in
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

o relation between G and G': when B = A'

o0 dw’ 14 g A

Relg™(w)] = Reld')l = [ §

di ()

w —

—Bhw —Bhw
Im[GR(w)] = Ji%m (w) and |m[g’(w)] - 71”’TJ1 (w) (70)
S MG (W) = (tanh Phu ) Im[G! (w)]
| TI-27: proof of Eq. (70)
o fluctuation-dissipation theorem
» conductivity
Jo,s(w) = 055 (W) Esr (w) = 059 (w)iwAg (w) (71)
» linear response theory: Ji(w) = (js(t)js (0)) and G7(w) = Df(w) from Eq. (62).
Fors=¢,
) e e . e?1— g Fmw
iwoss(w) = =4 Das(w) = — I IMDg(w)] = os(w) = -5 (@)

which implies that the dissipation (o(w)) is related to the fluctuation (Ji(w)).
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Time-Ordered Green’s Functions (cont.)

[ T1-27: proof of Eq. (70)

Using
! 7’1 i6(w)
= - s w
w £ in w T
one gets
o dw' 14+ e B’
R ’
= —J
G (w) M Pn e —w i 1 (w")
o~ duw’ 14+ —Bhw'
= ~ <7997 —ir(1 £ e " o(w — W) ) ()
—oo 2T w — w’
oo dw 14+ e—,{-}ﬁw 14+ G_Bh“’
Pf‘h(w )+(*')fJ1(w)
w - 2
real part imaginary part

since J;(w) is real, and
e~ Bhw’

o dw’ 1
:/ © _ + _ ) Uy ()
foo 21 \w—w' +in  w—w —in

> dw’ 1 e pne’
-5 <Pm ~ il =) P iefﬁhw,'”‘s(‘”“» e

o dw' 1+ e B 13 e PAhw
:/ P () () U(w)
Lo 2T w—w! 2
— ————

real part imaginary part
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Finite-Temperature Green’s Functions

o finite-temperature Green’s function
G (1) = — (T-A(7)B(0)) = —(7) (A(7)B(0)) £ ©(—7) (B(0).A(7))
for -8 < 7 < 3, where
A(r) = e MAe™™
and 7 is the imaginary time variable or the inverse temperature.

e correlation functions

(AM)B0) =

nm

o PEm

(n|B|m) {m|.A|n) e7(5n=5)

o—FEn

(n|B|m) (m|A|n) " (En—En)

(B0)A(r)) =

e periodicity of G7(7): for0 < 7 < 3,
G (r)=%FG"(r - B)

where the upper/lower signs correspond to bosonic/fermionic operators.
— due to the periodicity property, G” can be expanded in a Fourier series.

(75)

(76)

| TI-28: proof of Eq. (76)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Finite-Temperature Green’s Functions (cont.)

TI-28: proof of Eq. (76)

We pick 0 < 7 < B orequivalently —8 < 7 — 8 <0,

—BEp
G7(r = B) = + (BOJA(r — ) = + 3 —— (n[B|m) (m|.Aln) "~ =En
—BEn—B(Em—En) "
=+ (nBIm) (m|Ajn) &7 Em D

nm Z
—BEm
e (Em—
=+> Z— (nIB|m) (m|A|n) e (Em—En)
nm

=+ (A()B(0)) = ¥G7 (1)
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Finite-Temperature Green’s Functions (cont.)

e Fourier transform

B )
gT(iwn) — / dT elwnTgT(T)
0

T 1 —liwnT AT} (77)
G7(r) =5 > e "G (iwn)
B
The periodicity put constraints on possible values of Matsubara frequencies
M, fermions
wn 2nm (78)
_— bosons
B
e G"(iwp) in terms of Jj(w)
. 1 [ dw' 1+e fr
G (iwn) = d Ji(w') (79)

h)_o 27 iwp/h—w’

TI-29: proof of Eq. (79) |
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Finite-Temperature Green’s Functions (cont.)

|TI—29: proof of Eq. (79)

B . B8 .
g*(iwn):/o dr 6“7 g7 (1) = 7/0 dr 6“7 (A(r)B(0))
B ) e~ BEm
_ jwnT
= /0 dre S S
nm
—BEm B .

--3¢ —— (nlBIm) <m|A\n)/ dr eliwntEm—EnT

nm 0

—BEm (Em—En)B _

e Fe 1

== S sy iman
nm

(n|B|m) (m| A|n) g"(Em=En)

iwn + Em — Ep
since
b _ {e‘:(z”“)" = —1, fermion
T — 1, boson
And

. oo e BEm 1+ efﬂhw’
G (iwn) = / d(he') >~ ~—— (nlBIm) (ml.A|m) 6(he’ + Em — En) ——————
R nm

_ iwp — hw’

= Ji(w)/27h
1 oo dw' 14 e 70
== ()

0o 2T lwp/h—w
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Retarded and Finite-Temperature Green’s Functions (cont.)

e analytical continuation

1 [ dw'1+e

9 wn) =3 | o Gt — (@)
/= (80)
GF(w) = = dwlﬂ‘j( 5
“r= e 27rw—w’+l'771w
- WG (iwn/h — w + in) = G7(w) (81)

» G7(iwp) is defined only at a discrete set of points (iws) on the imaginary axis of
frequency

» GR(w) is defined for all values of w in the real axis

» it is easier to calculate the finite-temperature Green’s function compared to the
retarded Green'’s function because the Wick’s theorem can be applied to the
finite-temperature Green'’s function
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Electrical Conductivity

e our strategy: electrical conductivity os¢ (q, w)
+ retarded Green’s function DE, (q,w) from Eq. (62)
+ (analytical continuation) finite-temperature Green’s function Dgy (q, 7)
e remark on diamagnetic term
» current contains a diamagnetic part (which is very important in obtaining the
electromagnetic response of superconductors as well as the correct response of
metals)

ing 62

Jo(r, t) = oy

E(r, 1) (82)

» the first-order expansion in A neglects the diamagnetic part

» it is diagonal in space indices and does not contribute to the Hall conductivity or
other topological invariants of insulators — it is not taken into account in the
following calculations

e spatial translational symmetry — Fourier transform over the position coordinates
D (a,t —t') = —i0(t) ([is(a, 1), Js (=0, )], (83)
see Eq. (60).
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Electrical Conductivity (cont.)

o finite-temperature Green’s function
Dss(q,7 = 7') = — (Tris(@, 7)is' (—4, ")) (84)

forr — 7' > 0.
> currents being bilinear in fermionic operators — bosonic operator

» Dss'(Q,7) = Do (A, T + )
» Matsubara frequency v, = 2nx/ for integer n
» Dgg depends only on 7 — 7/, so we put 7' = 0.

¢ imaginary-time-dependent current operator in the small q limit: from Eq. (46)

on? .

o(a.7) = ﬁ}j 0l q/2u(T)0kra/2a(7) (85)
ko

with ¢(7) = e"ce™ ",
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Electrical Conductivity (cont.)

e Wick’s theorem «+ non-interacting Hamiltonian (quadratic in c¢)

Dy (q7 )

one® ong P ; )
Z Z Ohke Ok, <chk—q/2a(T)Ck+q/2ﬁ(7')ck/+q/2a/Ckuq/25/>0
kk! aBa’B’ o s/

oree ony / o
B _7§ 52/, Ohks OhK,, TrGiq/20(7) 0 ~as26 o {77 Gktq 26(T)C 1q/20/

Here we keep only the connected parts.
o fermionic finite-temperature Green'’s function

. 1
Gopllr) =~ (Towr(Dl)y = Gusliion) = 1| @)
n aB

here G(k, iwn) is a M x M matrix.
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Electrical Conductivity (cont.)

e Fourier transform

1 O hk . 0 hk
Dssr (q, ivn) = NB Ek §m Tr {871/(5 g(k+q/2,lwm)ahk G(k—q/2, iwm — ivp)
(88)

where the trace is done over the orbital indices.

[T1-30: proof of Eq. (88) |

e summation over Matsubara frequencies wm
e analytical continuation: ivp,/h — w + in
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Hall Conductance and Chern Numbers Linear Response Theory, Green’s Functions, and Conductivity

Electrical Conductivity (cont.)

| TI-30: proof of Eq. (88)

Dss’ (q7 iVn)
B .
= / dr €' Dyyr (9, )

aB gpa’s’
IR - org? oy . f
N e Z Z Ohks ahk, < Tck_q/ga("—)ck’—q/zﬁ’>0 < TCk+q/25(T)Ck,+q/2(’/>0

kk/ aBa’ ﬁ’
o’ ong"” :
= —72 D T T /0 d7 6" Gy o (k — /2, =7)(~ G (k + /2, 7))
Kk s s
afa / ’ L
1 S one’ one? ? gy v
=5 T
NS G, Ohks Ohky o
1 .
x Eze'“m”gﬂ,a(k—q/z,iwm/ Z e MG, (K4 q/2, iwn)
m’ m
ahﬁ/ﬁ/ V[P g gnt )
k 2 k — 2. _ d i(vn+w, s —wm)T
%Zk: ﬂz;g/ ahks Gtz o) onky ek —a/ "w’"’)B/o e

=9

WmtH>@m—vn

0 . .
= N7 ZZTr [Wg k+0a/2, iwm) Bh’;k G(k —q/2, iwm — /z/,,)}
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Hall Conductance and Chern Numbers Hall Conductance

Outline

4. Hall Conductance and Chern Numbers

4.3 Hall Conductance
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Hall Conductance and Chern Numbers Hall Conductance

Diagonalization of Hamiltonian

* energy eigenstates and eigenvalues of M x M matrix A’
B3 () = e (K)ul(K) (89)
» ¢,(K): v energy eigenvalue (y =1, , M)

» u2(K): o component of 4™ orthonormal eigenstate
e unitary matrix U(k)

Uss(K) = UZ(K) — [U'Ulap =D UiaUys = us"ul =das  (90)
vy vy
+ ™ column of U(K) is the column vector by u” (k).
o diagonalization of hy
U' (k) U(k) = diag(e1 (K), - - , em(k)) = e(K) (91)
 unitary transformation and diagonalization of # (k)

H(K) = deaea K)Oko With Gk = Z 1 5(K) o (92)

TI-31: proof of Eq. (92) |
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Hall Conductance and Chern Numbers Hall Conductance

Diagonalization of Hamiltonian (cont.)

TI-31: proof of Eq. (92)

Using
UT(kK)nU(K) = e(k)  — = U(K)e(k)UT (k)
one obtains
H=>" i el o
af

=30l D Uar (e (K)UT ; (K)as
ap ¥
=3 <Z Ucw(k)c;‘a> e (K) (Z U,tﬁ(k)q(5>
y «@ ﬁ
.
=2 (Z Ula(km) ey (K) (Z uzﬁ(k)ow>
v o B

R —— )

= dkT7 = Ok
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Hall Conductance and Chern Numbers Hall Conductance

Adiabatic Transformation and Topological Properties

e linear-response electrical conductivity depends on the , €a(K) as well
as the eigenstates
«+ poles at ¢, (k) of Green’s functions — residue at each pole

e small of Hamiltonian (no gap is closed, no level crossing)
— change in band energies
— change in Hall conductance ?
e topological properties, if any, should not depend on the energies of the filled bands
» if the (small) adiabatic change in the Hamiltonian affects the Hall conductance, it
would not be topological invariant.
» the immunity of the Hall conductance to the adiabatic change
— a hint that it is a true topological quantity
» the Hall conductance can depend on eigenstates: note that the Berry phase is
determined by the adiabatic evolution of eigenstates.

o flat-band limit
» the energy of all the occupied states set to be a same value, say eg < 0 (note that
currently the chemical potential is set to be zero)
» the energy of all the unoccupied states set to be a same value, say e > 0
— makes it easier to calculate the conductivity while the topological nature is still
captured.
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Flat-Band Limit

Hall Conductance and Chern Numbers Hall Conductance

e ordering of band energies: p filled bands and M — p empty bands

(k) < oK) < - < 6p(k) < O(= 1) < cpur(K) <--- < cu(k)  (93)

— we assume that all the empty bands are separated by a full gap at all k

from the filled (negative-energy) bands

¢ adiabatic transformation: for an adiabatic parameter t € [0, 1]

el ) tegt, T<a<p
Ea(kJ)_{ea(k)( t)+ect, p+1<a<M %)

att =0, E.(k,0) = en (k)

att=1, E.(k,t) =egfora<pandesfora>p+1

throughout the adiabatic evolution, the structure of the band energies remains
same: (1) the Hamiltonian remains gapped and (2) no band crossing at the Fermi
level

BUT this transformation keeps the eigenstates from changing

h(t) = U(k)diag(E; (K, t), - - , Em(k, 1)) U' (k) (95)

we are interested in only the final transformation at t = 1
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

e Hamiltonian after the adiabatic transformation for k
P M
h(t=1)=cc Y _lok)(ak|+ec > |ok)(ok|, where |ak)=d{, [0) (96)
a=1 a=p+1

e projection operator to 4" eigenstate

PY(K) = [vk) (vk| = PL(K) = (alvk) (k|8) = ud(K)u} (k) (97)
satisfying
PUK) D a|Vk) =D ay vk (k') = a, k) (98)

e projection operators to filled and empty bands

PE( Z|ak (k| and PE(k) = Z lak) (ak| (99)

a=1 a=p+1
satisfying the following identities:

h(1) = eaPO(K) + eePE(k), PO+ PE =1, [PYEP=pPYE POpE=0
(100)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

o fermionic finite-temperature Green’s function

1 () N PE(K)
— he(1) I

(101)

G(k, fwn) = -~

|TI-32: proof of Eq. (101) |

e current-current correlation function (finite-temperature Green’s function for current)
from Eq. (88) in the q — 0 limit

'Dss'(q—>07iyn)_ eE) ZZTr[aPG (.Pe(k) n PE(k))

ahks lwm — €g fwm — €E

y aPG(k) Pk PE(K)
Ohkg iwm — ivn — €g  Iwm — ivp — €E
(102)

TI-33: proof of Eq. (102) |

104



Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

|TI—32: proof of Eq. (101)

Since (omitting the argument k for P/E for simplicity)

PC PE . P PE ,
<.7 + ) (iwn — hx) < - + (’Wn - GGPG - 6EPE)
lwn — €g lwp — € lwn — €g lwp — €

PCiw, — P PEiw, — PF?
_ flJn €G fiJn €E ( 7DE7DG _ 0)
Iwp — €g lwn — €g
— pC . pE ¢ PG _ pC pE2 _ 7)E)
=1,

one finds that
: , - PO(k PE(k
G (K, iwn) = (iwn — hg) 11— A + (k)

iwp — €g iwp — €g
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

[ T1-33: proof of Eq. (102) |

Since,att =1,

oh(1) @ G £ oPC(k) 6 oPC(k)
= — P (k P(k)) =ec——— 1—P (k) = —€f)——
ok = e (P00 + ePE0) = ca=pn = e EW ( (k) = (6 = ee) 5
and using the fermionic finite-temperature Green’s function given by Eq. (101), the current-current correlation
function (in its Fourier transform) is simplified into

ah
Deyr (q — 0, ivn) = Z ZTr [am: K, i )Bhk - iu,,)]
_ aPe(k) ( PO(k) PE(k)
N N7:f Xk:;ﬁ {(EG =€) ohks <iwm —c T Tom—ez
aPC(k) PC(k) PE(K)
x (ea = ee) <iw “ivn—ca | fom—ivn—c2

_ (eg — ) aPCe(k) [ PO(K) PE(K)

B NB XK:Xm:Tr|: OhKs <iwm—ee+iwm—eg
aPC(k) PC(k) PE(k)
ohk,  \ iw +

— ivp — €g iwm — vy — €
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

e projector algebra

(0:P )P (05 POYPY = (9:P°)P* (95 PO)PF = (103a)
(9sP®)PC(8y PE)PE = — (05 PG)(as’P )PE (103b)
(0sPOYPE (95 POYPC = —(95PC) (95 PFYPC (103c)

TI-34: proof of Eq. (103) |

e summation over Matsubara frequency wm

(eg —ce)?
GNE (

>

k

Desr(q — 0, ivp) = ne(ea) — ”F(GE))

G G E
(Tr [8§nk( dhkgy PG(k)] Tr [aghkik) Bgik(,")PE(k)] )

ivn+ €eg — €E ivn + € — €g

(104)

TI-35: proof of Eq. (104) |
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

| TI-34: proof of Eq. (103)

For simplicity, we omit the argument k for P¢/£.
First, we derive some nice identities:
1=P°+PF 5 0=0,P%+PF) — oP%=-0P"
0=PP% 5 0=0,P*P% — (8:;PF)P%=-PFo,PC
PO/E — [PO/ER 9, pC/E — (9,pC/EYpO/E 4 pO/Ey pC/E
o PO/EYPCIE _ g pC/E _ (9, pC/EYpC/E

o (8sP)PC(8, PC)PC
(05PCYPO(0, POYPC = (9:7°) (94 PC — (04 P9)PC) PC (g, (0)
= (@:P°) (0, PO)PC — (0, POPC) (. PO
=0
o (9sPC)PE(8, PC)PE
(0:PC)PE (0, POYPE = (0:P%) (—(95 PFYPC) PE (- Eq. (b))
=0 ( .PG,PE — 0)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

o (3sP%)PC(0,PO)PE

(0sPE)Pé (0, PO)PE (aP )yPE (-0, ) PE (. Eq (@)
= (0P )(fw >7> PE (. Eq. (b))
= —(9sP%) 9y PE)PE (. Eq. (a) and [PE* = PF)

o (8sPC)PE(8y PE)PE

(0sP)PE(0y PEYPC = (0sP%)(— (05 PEYPEYPC (- Eq. (b))
~(0sPC) (0 PEYPE (1 [POF = PO)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

|TI—35: proof of Eq. (104)

Noticing that the fermionic Matsubara frequencies iwn are the poles of the Fermi-
Dirac distribution function

1

(8 = G
since ePliwm) — @™ )™ — _{ and near the poles
1 1 1 1
ez 11 gepz (2 — iwn) T Bz—iwn
z=iwp

gives rise to a residue —1/4, a contour integral around one of the pole (iwn,) for an
analytical function g(z) is then

§ 2 (~Bre(2)a(2) = glivn).

Consider a counterclockwise contour integral along the contour C; surrounding the
imaginary axis (see two straight lines in the upper figure) whose upper and lower
segments should be vanishing due to infinitesimally small length of the corresponding
integral interval. Since all the poles of ng(z) are enclosed by this contour,

§. omonri@ote) = X glicm).

By adding the circular contour integrals (see the upper figure) whose contribution
should be zero, now we have two clockwise closed contour integrals which can be
deformed to the contour C, going around the poles of g(z) (see the lower figure).
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

Therefore, the summation over the Matsubara frequencies can be accomplished by summing the residue of
(—pBnkF(z))g9(z) over the poles of g(z) (say zm):

3 glien) = 7{ o (-OE(ENG) = 2 (~BnE(2)a(2) = ~ 3~ B (za)Reslg(zn)]
m
where the minus sign comes from the fact that the contour C, is clockwise.
In our calculations, we need g(z) = 1/(z — z1)(z — z2) where z; and z; # z, are complex constants. Then,

1 . 1 1 1 1 1 1
Egm:g(’“’”’) - EXM; (lom — 20)(lom —2) _ 2—21 B % (iwm—a N iwm—zz)
I‘IF(Z1) — I'IF(Zg)

= U R (@)

Z2 — Z

since the residue of 1/(z — z;,2) at z = z; /2 is one. Using Eq. (a) and the previous results in projector algebra,
one gets

DSS/ (q — 0, il/n)

_ (eg — )’ [0PC(k) [ PO(k) PE(k)
- NB zkam:ﬁ | Onks (iw + )

m—€a lwm— €

aPC(k) PE(k) N PE(K)
Ohky iwm — vy — €g iwm — vy — €eg

[ oPCK 2PC%K) G 87? Gy 2Pk
TrAPE (W) G PO(k) 25 PO ) Gl PE ()

D I e .
<~ (iwm — €g)(iwm — vy — €g) (Iwm — eg)(iwm — ivp — €E)
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

_ (ca—ce)’ s (- oPC(k) BPE(k)PG(k) M (ce) — ne(ive + <c)
N Ohks  Ohkg ivn + €g — €

T a'PG(k) BPE(k) PE(k) n,:(e.G) — n,:(ivn + EE)
Ohks Bhks/ Ivp + € — €
G Ek G E
T [ap k) 8P PG(k)} T [ap ®) 9PEW pE (i )]

k

(EG _ E1:_)2 Ohks Ohky s Ohks ahk
= ——(n —n,
N (ne(<a) F(ce)) zk: ivp + eg — €e ivp + e — €eg
where in the last line we have used the fact that
) 1 1
ne(ivp + €) = = ne(e)

eBlvmefe +1  ePe + 1

since v, are the bosonic Matsubara frequencies satisfying e”(#n) = 1.
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Hall Conductance and Chern Numbers Hall Conductance

Flat-Band Limit (cont.)

e analytical continuation, ivy — w + in
DE/(q = 0,w) = hDsy (q — 0, ivn/h — w + in) (105)

e Hall conductivity or conductance
— only antisymmetric part with respect to directional indices s, s’ is

DE/(q = 0,w) = (ne(eg) — ne(ex)) 2uw(eg — eg)?
ss ) (EG*GE)Z/hZ*(W+I'77)2

y 1N ST {BPG(k) oPEé(k) Pe(K)
k

(106)

Ohks  Ohke

Note that we have now obtained the correlation function purely in terms of projection
operators P into the ground-state manifold of occupied bands. Numerically, this is
the way we compute the Hall conductance because projectors are

, thereby bypassing the need for the gauge smoothing.

[ T1-36: proof of Eq. (106) |
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Flat-Band Limit (cont.)

[ T1-36: proof of Eq. (106) |

T (0P )00 PEYPE] = T [(05P0)(—0 POYPE| = =Tt (8P 9) (0 PP
Tr [(05P) (09 PFYPE] = T [(0sPO)(~04 POY(1 = PO)] = Tr [(85P %) (05 PO)PE| — Tr [(0:P%)(05 PO)]
Note that the last term is symmetric in s and s’ due to the property of the trace operation:
T (0P )0 P9)| = Tr [0 PO)(25P)]
so it is neglected (it should vanish for s # s’). Therefore,

Dss’ (@ —0,w)

aPCGk) aPEK) G PG aPEK)
T"[ ahki) ahk(,)P (k)} Tr[ 8hki) Bhk, LPE (k)

_ h(eg— )

B R e 1D D) e e creen v ey e prpe y
_ (e —ce)? _ _ 1 _ 1

=N (rlea) —orelee)) ( ot (co—ee)/h  wtint (e 6G)/ﬁ)

aPC(k) oPC(k)
ZT{ Ohks  Ohky POk )}

_ 2w(eg — eg)? 1 aPCe(k) oPC(K) g
= (nr(e) — ne(eE)) (o e/ — (@ TN zk:Tr { Bk, ok, PC(k)
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Flat-Band Limit (cont.)

e Hall conductance: from Egs. (62) and (71)

eZ

D) (107)

92 R
—+—Dgg (w) —  Oss/ (w)

iwosg (W) = e

here the constant ¢ (due to cgs unit system) can be dropped in the MKS unit system.

e dc limit, w — 0 and zero temperature, T = 0
» nonzero frequency corrections contain terms related to excitation into the empty
bands
» finite-temperature corrections contain thermal fluctuations into the empty bands
= only the zero-frequency and zero-temperature Hall conductivity has topological
meaning

aP%(k) OPC(k)
aks ak /

vew = 0w 5 0) =21 LS T { 9P W psag|  (108)

TI-37: proof of Eq. (108) |
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Flat-Band Limit (cont.)

TI-37: proof of Eq. (108)

At zero temperature, ne(eg < 0) = 1 and ng(eg > 0) = 0. Therefore, at zero temperature and in the w — 0
limit,

i _p

Ogsr (W — 0) = %;Dss’ (w)
G 2w(eg — eg)? 1 aPCe(k) oPC(k) g
= o w(MFee) = Melee)) o e (T e N 2T e onky K

/fsz 8PG )deEk)PG(k)
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Flat-Band Limit (cont.)

e Hall conductance

e 1 P
Ty == §kj ;[F oK)y (109)

in terms of the Berry curvature

[Fa(K)]xy = i ({(Oxak|dyak) — (0yak|dxak)) (110)

| TI-38: proof of Eq. (109) |

e redefinition of Fourier transform: infinite lattice — Brillouin zone

e’ 1

= hon ), dkxdky Z Fyy (k) (111)

a=1

= Berry phase

TI-39: proof of Eq. (111)
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Flat-Band Limit (cont.)

[ T1-38: proof of Eq. (109) |

M

T [(0sPC(0) (0 PEINPO)| = D (ak|(05PE(K)) (9 PE(K))PE (k) ak)

a=1

(ak| (957 (K)) (95 PE(K)) k)

M

Q
n

p p
(k| 3 (as 15K) (5K| + |5K) <8sBk|) S (asf 1K) (K| + [7K) (K] ) k)

=1 B=1 =1

P
-3 [ (K|35 | 8K) {BK|Oy |ak) + (rk]|D5] 5K) <as/5k\ak>]

o, B=1

M-

Q

P 4
+ > (9sak|dy k) + > (dsak|Bk) (9 BK|ak)
a=1 o, B=1
P

p p
=3 (Bsak|0y [ak) + S (ak|9s|Bk) (BK|Dy [ak) + > (95 (ak|Bk)) (D BK|ak)

=1 «,B=1

P
> " (Bsak|dy|ak) + D (ak|ds|Bk) (Bk|y | ak)
a=1 a,B=1

a= o

°

where the second term is obviously symmetric in s and s’ so that it should vanish.
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Hall Conductance
Flat-Band Limit (cont.)

Since the Hall conductivity is antisymmetric, explicitly,

vy = 58
e P
zﬁ ZZ (0sak|Ogr |ak) — i (Dgr ak|Os|rk))
AR
N ]ss’
h N k a=1
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Flat-Band Limit (cont.)

[ T1-39: proof of Eq. (111) |

For simplicity, here we assume an infinite one-dimensional lattice system. Then, the Fourier transform is defined
as
1 —ikyn, 1 v ik
ck:—ge XX and ¢ :—/ dky e ¢y
x Var Tn ™ ™ ver J-x * x

for —m < ky < . Note that cx, is periodic in ky by 27:

—i(kx+27)n; —ikxnx ,—2min;
Ciron = p_ @ (XFEING, = N7l ET NG, — g

nx nx

With this Fourier transform, the previous calculations can be properly modified. For example, the Hamiltonian is
transformed into

1 ) 1 )
H= ¢l hPeg = —/dk e Mxnigh pof____ /dq e€™Me,
ZZ o'l YIB ;ﬂzﬁ@ X Ky o if \/g Ix qx B

i ap

1 iy — _i o n; n,
ap 4 nx nx
. » 1 i
= / de/quZc;Xa (6(kx -g)> e rkxnxh;XB> Cap (- gzerkn — 5(k))
af ny n

- T —ikgnx pou
,/dechXa <Ze XM )ckx,;
B x

_ paB
= th
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Flat-Band Limit (cont.)

By comparing the old and new Fourier transforms, one can find that (with 1/v/N — 1/+/(27)9)

1 dvk

— o ==

N ; / (2m)d
One may want to introduce the lattice spacing as into wave number ks so that the integration over ks is changed
as

/" dks /"/as dks
— =
_g 2m _r/as 2T/ a8s

which will introduce an additional factor as. However, in our Hall conductivity formula, the integrand contains two

derivative with respect to ks. Hence, for d = 2, the additional factors from the lattice spacing are canceled out.
So, the integration interval is simply the Brillouin zone.

Finally, we have

e [ dky dk, & e 1 P
== XY > - (K
LAl B a§:1[F Wy = 45— /B , dky dky Q§:1[F ()l
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Outline

4. Hall Conductance and Chern Numbers

4.4 Chern Numbers
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Chern Number and Quantization of Hall Conductance

e Chern number

1 P .
5 /B ] dkydk, > " Fiy(ak) = (integer) (112)

a=1

e Berry gauge field (Berry vector potential) A and Stokes’ theorem
1 1
o~ /B dkuch Fy(ok) = 5 /C dk - Au (K) (113)

if A, (k) is well defined in the Brillioun zone
» Brillioun zone (2D) = a torus with no boundary

/dk~Aa(k):0 (114)
C

» finite values of the Berry phase — of A(Kk) in the BZ
= no global gauge that is continuous and single-valued over the entire BZ

e nonzero = obstruction to Stokes’ theorem over the whole BZ
for comparison, = obstruction to Stokes’ theorem in half the BZ
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Chern Number and Quantization of Hall Conductance (cont.)

e observable quantities is gauge invariant, but the wavefunction and the Berry
potential transform under the gauge transformation

lak) = €™ |ak) and AL (K) = A.(k) — Vi((K) (115)
e fixa defining a single-valued, smooth wavefunction, for example
» if the first component is nonzero, pick a phase to gauge-transform so that it is made real
ay (k) |as (k)|e~ /<1 (k) ay (k) ar (k)]
lak) = |2K)| = ax(k) gk [ak)| — [e1Ma (k)| — |y

note that if this pick of a smooth gauge over the entire BZ is possible, the Hall conductance
vanishes.

» failure of picking a phase when a;(k) =0atk=k; (i=1,---, Ns)
— we define small regions (circular or of any shape) around them

Rf = {ke Tl Ik — kil < ¢ [ak;); =0} (116)
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Chern Number and Quantization of Hall Conductance (cont.)

» inside Rf, suppose that ﬁ;“ component never vanishes — new choice of a gauge making
ag, (k) real

/S5 (K) ag, (k) | = [lag,(K)|| = v

» gauge transformation between |v) and |+;) at the boundary of Rf: The gauge

x5 (k) = ¢1(k) — ¢, (K) (117)
defines the gauge transformation

i) = oM 0y — oM 4oy and  Ai(k) = Ag(K) + Vix*(k)  (118)

o Berry phase in terms of winding numbers

1 1 a
Na=5- /BZ aksdky Fyy(ak) = o~ Zyi(ﬁf) dk - Vi (k) (119)

| TI-40: proof of Eq. (119) |

|TI—41: prove that n,, is an integer. |
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Chern Number and Quantization of Hall Conductance (cont.)

TI-40: proof of Eq. (119)

Each patch has defined its smooth gauge so that the wavefunction is smoothly differentiable in it. Noting that
Fyy is gauge-invariant, one can separate the integral into those over patches:

1 1 1
= dkydky Fyy(ak) = — dk,dk, F.,(cok dk. dk, Fu(ck
5 | dkudly Fuy(ak) 2W/T2v7m <ok xy<a>+;2ﬂfﬁf alky Foy (k)

1/ 1
= — dk - V x Ap(k) + —/ dk -V x Aj(k
3 P W+ 5 . i(K)

The Berry vector potentials are now well behaved in each of their respective patches, so we can apply Stokes’
theorem to obtain
1 / 1 1
— dkydky Fxy(ak) = — / dk - Ag(k) + — dk - A;j(k)
2r Jor w(ok) 27 Jo(18, - RE) Z 27 JoRe '
The torus does not have boundary, so we have 9(T2, — 3=, R¢) = — 3, R, where the minus sign means the
integration in the opposite direction. Then,

1 1 1
— kx dky F, k) = — dk - (Ai(k) — Ag(k)) = — dk - Vx;*(k
o | dicdl Fy (ol Z%/DRF (0~ o) =3 5 [ ok 97 00)
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Chern Number and Quantization of Hall Conductance (cont.)

[ T1-41: prove that n,, is an integer.

Let the boundary of the Rf region be a perfect circle so that OR; is parameterized by
k =k +ee® witho € [0,2n)
Here we have used the complex representation (z = x + iy) for 2D wave number (kx, ky). Then,
1 1

0 Oxi(k) 1 27 oxi(ki + <€)
— dk - Vi(k) = — d(ee” : :—/ do X0t == 7
2r Jore xitk) = 52 one ) Seer ~ 27 /, 26
1 —
=2 (X«'(k«' +ee®mO) — ik + 5))

Since we have the single-valuedness constraint on the wavefunction,
|i(ks + €)) = |i(ks + €€@™H07))) and  |yo(ks + €)) = |tho(ks + €@y
Since these wavefunctions are related by the gauge transformation
[Wilks + €)) = &~ Xi%T) [y (ks + €))

and
(ks + ceBm+07))) = @itk e ETI0 N g i cgiEmioTyy
we have
e~ xilks+e) _ e_ix,.(ks+ee"(27'+°_))
Hence, upon a full revolution around the point k;, we necessarily have
xi(ks + ee®m07) _ xi(ks + €) = 2nm

which proves that ﬁ Jore dk - Vxi(K) is integer.
1
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Chern Number and Quantization of Hall Conductance (cont.)

e Hall conductance, Chern number, and winding numbers
2 2
e e
oy = =1 E Na (120)

» the winding number n,, for band « counts the total vorticity and is gauge-invariant

« the positions of the vorticities in the BZ can be changed, for example, by
picking different components of the Bloch state to gauge-smoothen

« the vorticities can be even separated, creating positive and negative vorticities

» but the total vorticities are conserved

» Chern number is the sum of all vorticities in the BZ
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