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We investigate the supercurrent through a quantum dot for the whole range of couplings using the numerical
renormalization group method. We find that the Josephson current switches abruptly from ap- to a 0-phase as
the coupling increases. At intermediate couplings the total spin in the ground state depends on the phase
difference between the two superconductors. Our numerical results can explain the crossover in the conduc-
tance observed experimentally by Buitelaaret al. [Phys. Rev. Lett.89, 256801(2002)].
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I. INTRODUCTION

The Kondo effect and superconductivity are two of the
most extensively studied phenomena in condensed matter
physics ever since the pioneering works by Kondo1 and by
Bardeen, Cooper and Schrieffer,2 respectively. When a local-
ized spin is coupled to superconducting electrons, the two
effects are intermingled and even richer physics will emerge.
The physically interesting questions are: Would the Kondo
effect survive, overcoming the spin-singlet pairing of elec-
trons in superconductors(SCs) and the superconducting gap
at the Fermi level? If it does, how would such a strongly
correlated state affect the transport, especially the Josephson
current, between two superconductors?

The Josephson effect through a strongly interacting region
with a localized spin was discussed long before by Shiba and
Soda3 and Glazman and Matveev4 and further elucidated by
Spivak and Kivelson.5 The large on-site interaction only al-
lows the electrons in a Cooper pair to tunnel one by one via
virtual processes in which the spin ordering of the Cooper
pair is reversed, leading to a negative Josephson coupling
(i.e., a p-junction). This argument, however, is based on a
perturbative idea and holds true only for sufficiently weak
tunneling. It was suggested4 that as the tunneling increases,
the Kondo effect produces a collective resonance at the
Fermi level. As a result, the Josephson current is enhanced
by the Coulomb repulsion. Moreover, the Josephson cou-
pling is expected to be positive(i.e., a 0-junction) since the
localized spin is screened due to the Kondo effect. Based on
this, Glazman and Matveev4 assumed a strong coupling fixed
point and derived the Josephson current as a function of
phase difference. Recently, several approximation methods
have been used to investigate the transition from the 0- to
p-junction as a function of the tunneling strength:6–9A modi-
fied Hartree-Fock approximation,6 a non-crossing
approximation,7 and a variational method8 predict a 0-p
transition, whereas the slave-boson mean-field theory8 al-
ways favors the Kondo effect.

In this work, we use a numerical renormalization group
(NRG) method to investigate thoroughly the 0-p transition
as well as to examine the argument above suggested by
Glazman and Matveev.4 Based on the NRG method, we cal-
culate quantitatively the local properties(i.e., the pairing cor-

relation and the single-particle excitation spectrum) of the
quantum dot(QD), the total spin in the ground-state wave
function, and the Josephson current as a function of phase
difference. Finally, we show that our numerical results can
explain the experimentally observed crossover of the con-
ductance in SC-carbon nanotube-SC junctions.10

II. MODEL

The system consists of a QD with an odd number of elec-
trons coupled to two superconducting leads(L and R). The
study of Kondo effect in such a mesoscopic system has re-
cently attracted much interest due to its tunability. As already
demonstrated experimentally with normal leads,11 it allows
for various tests of Kondo physics, which are difficult in bulk
solids. The two leads are regarded to be standards-wave
superconductors(SCs) and described by the BCS Hamil-
tonian

HBCS= o
,=L,R

o
k,s

e,,kc,,k,s
† c,,ks − o

,
o
k

sD,e
+if,c,,k,↑

† c,,−k,↓
†

+ h.c.d, s1d

wherec,,k,s
† sc,,k,sd creates(destroys) an electron with energy

e,,k, momentum"k, and spins on the lead,. D, is the
superconducting gap andf, is the phase of the supercon-
ducting order parameter. The QD is described by an
Anderson-type impurity model

HQD = o
s

edds
†ds + U d↑

†d↑ d↓
†d↓, s2d

which is widely adopted for sufficiently small quantum dots.
In Eq. (2) ds

† and ds are electron creation and annihilation
operators on the QD. The level positioned, measured from
the Fermi energyEF of the two leads(throughout the paper
every energy is measured fromEF), can be tuned by an ex-
ternal gate voltage. The interactionU is order of charging
energye2/2C (C is the capacitance of the QD). The coupling
between the QD and the SCs is described by the tunneling
Hamiltonian
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HV = o
,

o
k,s

V,sds
†c,,k,s + h.c.d. s3d

Putting all together the Hamiltonian for the whole system is
given byH=HQD+HBCS+HV.

We take a few simplifications to make clearer the physical
interpretation of the results below. The two SCs are assumed
to be identical(eL,k =eR,k =ek and DL=DR=D) except for a
finite phase differencef=fL−fR; without loss of generality
we put fL=−fR=f /2. In the normal state, the conduction
bands on the leads are symmetric with a flat density of states
N0 and the widthD above and below the Fermi energy. We
also puted=−U /2 in HQD, Eq. (2); it has been checked that
an asymmetric modelsedÞ−U /2d gives the qualitatively
same results for physical quantities of our concern. We only
consider the symmetric junction,VL=VR=V. The coupling to
the leads is well characterized by the single parameterG
=2pN0V.2 Below we will distinguish the strongsTK@Dd and
the weaksTK!Dd coupling limits by the ratio between the
superconducting gapD and thenormal-stateKondo tempera-
ture TK skB=1d given by12

TK = GÎ U

2G
expFp

ed

2G
S1 +

ed

U
DG . s4d

Following the standard NRG procedures13,14 extended to
superconducting leads,15 we evaluate the various physical
quantities from the recursion relation

H̃N+1 = ÎLH̃N + jNo
m,s

sfm,N,s
† fm,N+1,s + h.c.d

− LN/2o
m

D̃msfm,N+1,↑
† fm,N+1,↓

† + h.c.d s5d

with the initial Hamiltonian given by

H̃0 =
1

ÎLFH̃QD + o
m=e,o

o
s

Ṽmsds
† fm,0,s + h.c.d

− o
m

D̃msfm,0,↑
† fm,0,↓

† + h.c.dG . s6d

Here the fermion operatorsfm,N,s have been introduced as a
result of the logarithmic discretization and the accompanying
canonical transformation,L is the logarithmic discretization
parameter(we chooseL=2), jN,1,13 and

H̃QD ; z
HQD

D
, D̃m ; z

Dm

D
,

s7d

Ṽe ; zÎ 2G

pD
cossf/4d, Ṽo ; − zÎ 2G

pD
sinsf/4d,

with z=2/s1+1/Ld. The HamiltoniansH̃N in Eq. (5) have
been rescaled for numerical accuracy. The original Hamil-

tonian is recovered byH /D=limN→`H̃N/JN with JN
;zLsN−1d/2.

III. PROXIMITY EFFECT

To see how superconductivity on the leads affects the in-
teracting QD in the strong and weak coupling limits, we first
examine the local properties on the QD with zero phase dif-
ferencesf=0d.16 Figure 1 shows the local pair correlation
Dd;kd↑

†d↓
†l as a function ofD /TK. As expected, the local pair

correlationDd vanishes withD, and gets smaller(even van-
ishes whenU→`) asD→`; see Fig. 1(inset). An interest-
ing aspect ofDd is the sign change atD=Dc.2.4TK, which
suggests that the physical properties are different in the
strong sTK@Dd and the weaksTK!Dd coupling limits. In-
deed we see(from the NRG calculation) that the ground-
state wave function of the whole system is of spin singlet
(the localized spin is screened out) for D,Dc and of spin
doublet(the SCs form Cooper pairs separately and the local-
ized spin is left unscreened) for D.Dc. The negative sign in
Dd in the weak coupling limit can be explained by a simple
second-order perturbation theory, while the positive one in
the strong-coupling limit is expected when there is a reso-
nance channel for Cooper-pair tunneling.17 Therefore, it
seems quite plausible to argue that in the strong coupling
limit the Kondo resonance develops even in the presence of
the superconducting gap in the conduction band and the
proximity effect arises through the resonance; see also the
discussion of the Josephson current below. Putting it another
way, the local moment of spin 1/2 induces a negativeDd for
weak couplings, but as the coupling increases it is screened
and a positiveDd is recovered.

This interpretation is further supported by the single-
particle excitation spectraAdsEd on the QD, as shown in Fig.
2 for different values ofD /TK. In Fig. 2(a) AsEd for zero
phase difference18 is shown and we observe a qualitative
change of the spectrum whenD becomes smaller thanTK. A
localized statebelow the superconducting gap appears for
D*TK, whereas the spectrum has a gap of the order ofD in
the other limit. The other panels in Fig. 2 show the phase-
dependent density of states in the sub-gap regime. We clearly
observe a phase-dependent formation of an Andreev bound
state. ForD /TK=0.1 the Andreev state emerges from the gap
with increasing phase and reaches the smallest energy for
f=p, which is reminiscent of a usual superconducting junc-
tion. In weak coupling limit,D=10TK, we observe an oppo-
site phase-dependence, which is similar to the predicted

FIG. 1. The pairing correlation on the quantum dot,Dd

;kd↑
†d↓

†l, as a function ofD /TK. Inset: plot of bare(not normalized)
values ofDd. We have chosened=−U /2=−0.1D andG=0.04D.
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p-junction behavior.4 For an intermediate coupling,D /TK
=1.8, there is always a localized state below the gap, which
has a non-monotonic phase-dependence. In the following, we
will discuss the Josephson current through the quantum dot.

IV. JOSEPHSON CURRENT

We now turn to the Josephson current through the QD in
the presence of a finite phase differencef. Within the NRG
method, the Josephson current can be conveniently calcu-
lated by19

ISsfd
Ic
short = −Î DG

2pD2fsinsf/4dJe + cossf/4dJog s8d

with Jm;os sds
† fm,0,s+h.c.dsm=e,od. Here Ic

short;eD /" is
the critical current of a transparent single-mode junction.17

Figure 3 shows the Josephson current as a function of
phase differencef between the two superconducting leads
for different values of ratioD /TK. In the weak coupling limit
sTK!Dd, it is clearly seen from Fig. 3(a) that the effective
Josephson coupling is negative(i.e., ap- junction).3–5,7,20In
addition, the supercurrent-phase relation is very close to a
sinusoidal function, like typical “tunneling junctions.”17 We
also report that the ground state is a doublet for any phase
differencef.

In the strong coupling limitsTK@Dd, on the other hand,
the Josephson coupling is positive;6–8 see Fig. 3(b). Another
remarkable thing is that the current-phase relation is highly
non-sinusoidal and reminiscent of the current-phase relation
in the short junction limit.17 Furthermore, the critical current
approaches the unitary limitIc

shortof “short junctions”17 as the
coupling grows strongersD /TK→0d, as shown in Fig. 3(d).
These results suggest again that in the strong coupling limit
the Kondo resonance develops at the Fermi level and Cooper
pairs tunnel resonantly through it. Naturally, the ground state
turns out to be a spin singlet for anyf. It should be stressed
here that although the Kondo effect manifests itself as a reso-
nance channel for the Cooper-pair tunneling, the Kondo peak

of width TK in the quasi-particle excitation spectrum is sup-
pressed(showing a gap) below the energy scale of order
Ds!TKd; see Fig. 2.

Another interesting regime is the intermediate onesD
,TKd. As demonstrated in Fig. 3(c), for D,TK the curve of
ISsfd breaks into three distinct segments. The central seg-
ment resembles that of a ballistic short junction,17 while the
two surrounding segments are parts of ap-junction curve.6

Namely, the critical valueDcsfd depends onf with
Dcsfd.Dcsf8d for ufu, uf8u;21 for example,Dcs0.3pd<1.6
and Dcs0d<2.4. Evidently, the NRG results show that the
ground state is a spin singlet in the central segments
sD,Dcsfdd and a doublet in the othersD.Dcd.

V. EXPERIMENTS

In the experiments of Buitelaaret al.10 the interplay be-
tween superconductivity and Kondo physics was observed in
non-equilibrium transport(multiple Andreev reflections),22,23

but no supercurrent was measured. However, the absence of
a dissipationless branch in the IV is not surprising in such
(intrinsically) small junctions. Indeed thermal or quantum
fluctuations in connection with a resistive environment can
lead to a finite resistance.24 In Ref. 10 the “quality factor”
RNCs2eIc/"Cd1/2, governing the dynamics of the correspond-
ing resistively-shunted junction(RSJ) model, is always
smaller than 1(Ref. 25) and the junction is therefore over-
damped. In this limit the measured resistanceGS is directly
related to the current-phase relation, roughly likeGS/GN
,exps"Ic/eTd.26 This enables us to relate our results of Fig.

FIG. 2. (Color online) The single-particle excitation spectrum
on the quantum dot. ed=−U /2=−0.1D and G=0.04DsTK

=0.0089Dd.

FIG. 3. (Color online) Josephson currentISsfd (in units of
Ic
short;eD /") as a function of phase differentf (a) for D /TK=10

and(b) for D /TK=0.1.(c) Same curves forD /TK=1.6, 1.8, 2.0, and
2.2 (near the 0-p junction transition point). (d) Critical current in
the Kondo regime. We puted=−U /2=−0.1D andG=0.04D. Inset:
conductance resulting from the RSJ model(see the text).
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3 to the measured crossover of the conductance as function
of TK /D, see Fig. 4 of Ref. 10. For the experimental tem-
peratureT=50 mK and gap parameterD,1.2 K, the calcu-
lated critical current in Fig. 3(d) means that the factor"Ic/eT
becomes much larger than 1 in the Kondo regimeD!TK,
when the transparent junction limit is reached. Thus, the ex-
perimentally observed crossover toGS.GN in this limit is a
manifestation of the supercurrent approaching the unitary
limit eD /". The inset of Fig. 3(d) shows the conductance as
a function of TK /D and that the crossover appears forTK
<0.5D, which is in quite good agreement with the experi-
mental result of Ref. 10.

VI. CONCLUSION

We have studied the Josephson current and the proximity
effect on the QD coupled to two SCs in a whole range of
coupling. Our results exhibit a transition from the weak to
the strong coupling limit, which occurs whenD,TK. In the
weak coupling limit, superconductivity dominates the Kondo

physics, and the tunneling of Cooper pairs can be treated
perturbatively. The system is ap-junction, the pairing corre-
lation on the QD is negative, and the ground state is a spin
doublet. In the strong coupling limit, the Kondo effect be-
comes important and manifests itself as a resonance channel
for the Cooper-pair tunneling. This leads to a positive Jo-
sephson coupling(0-junction) and positive pairing correla-
tion on the QD. Here the Kondo effect in the presence of
superconductivity is distinguished from the usual one with
normal leads in that the Kondo peak in the quasi-particle
excitation spectrum is suppressed completely(exhibiting a
gap) for energies below the superconducting gap.
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