Solid-state Quantum Information Using Defects in Semiconductors

Hosung Seo

Outline

• Quantum Technologies using deep-level defects

- a. Hardware and Software of Quantum Information
- b. The NV center in diamond
- c. Defect spin qubits in wide-gap semiconductors
 - 1. Quantum decoherence (H. Seo et al., Nat. Comm. (2016).)
 - 2. Design of new spin qubits (H. Seo et al., arXiv:1709.09818 (2017).)

Giulia Galli

David Awschalom

Quantum Age

IEM

Quantum Technologies

Technology and science based on quantum principles such as coherence and entanglement.

J. P. Dowling and G. J. Milburn, *Quantum technology: the second quantum revolution*, Phil. Trans. R. Soc. Lond. A 361, 1655 (2003).

Quantum Technologies Flagship Intermediate Report (European Commission, 2017) http://go.nature.com/2m48x41

Requirements to Realize Quantum Technologies

Quantum Software

Quantum Hardware

- Communication
 - ✓ BB84
- Computation
 - $\checkmark\,$ Shor's algorithm
 - ✓ Grover's algorithm
- Simulation
 - ✓ Bravyi-Kitaev
- Sensing/Metrology
 - ✓ Entanglement-based

Superconducting Circuits

Diamond

Color Centers

Requirements to be Quantum Bits

D.P. DiVincenzo, Fortschritte der Physik 48, 771 (2000).

Requirements to be Quantum Bits

Deep-level defects: Quantum states trapped in 'crystal vacuum'

Nitrogen-vacancy (NV) center in diamond

VM Acosta thesis (2011)

WA Gao et al., Nat. Photon. (2015).

- NV center = artificial 'atom' trapped in the solid-state
- Ground state with spin triplet (S=1)
- Long coherence time at 'room temperature'
- Single-spin optical addressability

F Jelezko et al. Phys. Rev. Lett. (2004).

NV centers as qubits

NV centers: applications in science and tech.

Fundamental Science

Loop-hole free Bell inequality violation Hensen *et al., Nature* (2015). 42 H

Time Crystal Choi *et al., Nature* (2017).

- Applications
 - Quantum Information processing van der Sar *et al., Nature* (2012).
 - Nano-scale sensors

NV center in diamond: Continuing Breakthroughs and Innovations

"Nitrogen Vacancy Center in Diamond" searched in Google Scholar

Year

Going beyond NV: Spin qubits in wide-gap semiconductors

Qubit properties

- Low Readout fidelity
 Hundreds of repetition
- Large phonon side band
 Hard to entangle qubits
- Orbital dephasing of the excited states
- → Limiting high T operation

Host properties

- Chemically inert and durable
- \rightarrow Hard to process for device fab.
- Growth of eletronic-grade diamond is limited < a few mm
- \rightarrow scalable implementations are limited
- No interesting lattice functionality

NV is unique? No other choices?

Going beyond NV: Spin qubits in wide-gap semiconductors

W. Koehl, H. Seo, G. Galli, and D.D. Awschalom, MRS Bulletin 40, 1146 (2015).

Alternative defect qubits in SiC

✓ SiC-based technologies

SiC Power electronics

- The divacancy spins is 'NV-like' qubit in SiC.
- Surprisingly, the coherence time of the divacancy spin has been measured to be much longer than that of the NV center.

Outline

• Quantum Technologies using deep-level defects

- a. Hardware and Software of Quantum Information
- b. The NV center in diamond
- c. Defect spin qubits in wide-gap semiconductors
 - 1. Quantum decoherence (H. Seo et al., Nat. Comm. (2016).)
 - 2. Design of new spin qubits (H. Seo et al., arXiv:1709.09818 (2017).)

David Awschalom

Hosung Seo (hseo2017@ajou.ac.kr)

Quantum decoherence: transition from a pure state to a classical mixed state

A. Abragam, Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).

Nuclear spin driven decoherence of spin qubits

Defect spin qubits lose the coherence in the presence of fluctuating nuclear spin bath.

Stanwix *et al.,* PRB (2010) Maze *et al.,* PRB (2008). Christle *et al.*, Nat. Mater. (2014). <u>Seo</u> *et al.*, Nat. Comm. (2016).

Hahn-echo spin coherence has been measured using optical methods

Hahn echo (*performed by Falk, Klimov, Miao, Awschalom)

Two approaches for quantum decoherence

1. Top-down approach (phenomenological): Lindblad (Markovian) Master Eq.

$$\rho_s \to \Lambda \rho_s$$

$$\frac{d\rho_s}{dt} = \frac{i}{\hbar} [H, \rho_s] + \sum_{\mu > 1} \mathbb{D} [L_{\mu}] \rho_s$$

 $\rho_{tot}(t) \approx \rho_S(t) \otimes \rho_E(t)$

2. Bottom-up approach (microscopic): Quantum Bath Approach

$$\rho_{tot}(t) = U(t)\rho_{tot}(0)U^{\dagger}(t) \neq \rho_{S}(t) \otimes \rho_{E}(t) \quad \rightarrow \quad \mathcal{L}(\tau) \equiv \frac{tr[\rho_{tot}(\tau)S_{+}]}{tr[\rho_{tot}(0)S_{+}]}$$

Breuer and Petruccione, The Theory of Open Quantum Systems (Oxford, 2002)

Quantum bath model for qubit decoherence

Theory: Quantum Bath + Cluster Correlation Expansion *No adjustable free parameters!

$$\begin{aligned} \mathcal{H}_{total} &= \mathcal{H}_{e} + \mathcal{H}_{n} + \mathcal{H}_{e-n} + \mathcal{H}_{n-n} \\ |\Psi(0)\rangle &= \frac{1}{\sqrt{2}} (|1\rangle + |0\rangle) \otimes |\mathcal{B}(0)\rangle \\ |\Psi(\tau)\rangle &= \frac{1}{\sqrt{2}} (|0\rangle \otimes |\mathcal{B}^{(0)}(\tau)\rangle + |1\rangle \otimes |\mathcal{B}^{(1)}(\tau)\rangle) \end{aligned}$$

 $\mathcal{L}(\tau) \propto \left< \mathcal{B}^{(1)}(\tau) | \mathcal{B}^{(0)}(\tau) \right>$: off-ormation elements reduce operations of the set of the s

: off-diagonal element of the reduced density operator.

Breuer and Petruccione (Oxford, 2002)

Cluster correlation expansion (CCE)

$$\mathcal{L}(\tau) = \prod_{i} \tilde{\mathcal{L}}_{i}(\tau) \prod_{\{i,j\}} \tilde{\mathcal{L}}_{i,j} \prod_{\{i,j,k\}} \tilde{\mathcal{L}}_{i,j,k} \dots = \prod_{C \subseteq \{1,2,3,\dots,N\}} \tilde{\mathcal{L}}_{C}(\tau)$$

Yang and Liu (2008), Witzel et al. (2005)

...

Validation of the theoretical model

Validation of the theoretical model

Hahn-echo coherence time (T_2)

Strongly interacting nuclear spin clusters cannot form in SiC

I. The ²⁹Si and ¹³C nuclear spin baths are decoupled.

Witzel and Das Sarma (2006). Yang *et al.* (2014).

$$\mathcal{L}_{(kk)}(\tau) = \prod_{i} \widetilde{\mathcal{L}}_{i}(\tau) \prod_{\{i,j\}_{hetero}} \widetilde{\mathcal{L}}_{i,j} \prod_{\{i,j\}_{homo}} \widetilde{\mathcal{L}}_{i,j} \qquad \begin{array}{l} \mathbf{Y}_{C} = 10.71 \text{ MHz/T} \\ \mathbf{Y}_{Si} = -8.46 \text{ MHz/T} \end{array}$$

II. Homonuclear spin pairs are farther apart. Dipole-dipole ~ $1/r^3$

The heterogeneity of the nuclear spin bath in SiC prohibits formation of strongly interacting nuclear spin pairs.

Outlook: Extension of T_2 by isotopic purification

Experimental collaboration

C. Anderson

A. Bourassa

D. Awschalom

Outline

• Quantum Technologies using deep-level defects

- a. Hardware and Software of Quantum Information
- b. The NV center in diamond
- c. Defect spin qubits in wide-gap semiconductors
 - 1. Quantum decoherence (H. Seo et al., Nat. Comm. (2016).)
 - 2. Design of new spin qubits (H. Seo et al., arXiv:1709.09818 (2017).)

He Ma

Marco Govoni

Giulia Galli

Alternative qubits in wide-gap semiconductors

Wide-gap semiconductors

Industrial: SiC, GaN, SiO₂ Multi-functional: AIN, BaTiO₃ 2D materials: *h*-BN, TMD

Single spins

$$S = \frac{1}{2}, 1, \frac{3}{2}, ...$$

Defects in SiC

Divacancy Koehl *et al.* (2011). Si vacancy Widmann *et al.* (2015).

Hybrid quantum systems

Spin qubits in the solid state exhibit interactions with many degrees of freedom in the solid that can be harnessed for quantum applications.

Quntum-state control and sensing

Quantum memory using nuclear spins

Boehme et al., Science (2012)

First-principles design of defect spin qubits

First-principles Computational Methods + Effective Modeling

1. Point Defect = Localized quantum system coupled to an infinite lattice

2. Kohn-Sham Density Functional Theory $\left[-\frac{\hbar^2}{2m}\nabla^2 + e^2 \int \frac{\rho(\vec{r}\,')}{|\,\vec{r} - \vec{r}\,'|} d^3r' + V_{ion}(\vec{r}\,) + \frac{\delta E_{xc}[\rho]}{\delta\rho} \psi_{n,k}(\vec{r}\,) = \varepsilon_{n,k} \psi_{n,k}(\vec{r}\,)$

Traditional design strategy of new defect qubits

a

Traditional design strategy of new defect qubits

NV and divacancy share many common properties. But, is this always good?

- 1. Low optical read-out fidelity
- 2. Small spin transverse coupling constant.

NV center in diamond $(d_{\perp} = 10 \sim 20 \text{ GHz/strain})$

Jayich group, UCSB

Single-phonon cooperativity

$$C = \frac{g^2}{n_{th}\kappa\gamma} \propto \frac{(d_{\perp}\epsilon_{ZPM})^2 QT_2}{k_B T}$$

Lee et al. J. Opt. (2017).

Divacancy in SiC $(d_{\perp} = 5 \sim 10 \text{ GHz/strain})$

Awschalom group, UChicago

Computational design of new spin qubits

Large-metal ion vacancy complexes

Neutral Hf- or Zr-vacancy complex

Main points:

- 1. Formation of the complex
- 2. Charge-state stability
- 3. Ionization energy = 2 eV

Defect Formation Energy

Spectroscopic quantities

1. Optical Zero-phonon Line (ZPL)

3. Zero-field splitting $(S \cdot D \cdot S)$

2. Hyperfine tensor $(S \cdot A \cdot I)$

*Spin-strain coupling

*Stand-alone Python code (developed by H. Ma, H. Seo, and M. Govoni)

Outlook

- 1. We designed spin qubits in SiC from scratch, which could be suitable for SiC-based hybrid quantum systems
- 2. The strategy also works for AIN.
- \rightarrow Portable qubit platform. Potential interface with AIN-based optomechanics

Experimental collaboration

S. Whiteley

Defect qubits in complex oxides

T₂ >> 1 ms (expected)

F.J. Heremans (Argonne)

Conclusion

Spin decoherence dynamics

- We showed theoretically and experimentally that T_2 of the divacancy reaches 1.3 ms.
- Our results point to polyatomic crystals as promising hosts for coherent qubits in solids.

Seo, Falk, Klimov, Miao, Galli, and Awschalom, *Nat. Comm.* 7, 12935 (2016). Predictions on new potential defect qubits

We showed that large-metal-ion (LMI) vacancy complexes could be a 'portable' qubit platform in widegap semiconductors potentially with a large spin-strain coupling.

Seo, Ma, Govoni, and Galli, arXiv:1709.09818 (2017).

Acknowledgement

THE UNIVERSITY OF Research Computing CHICAGO Center

The Giulia Galli group

The David Awschalom Group

 \vdash

CUI AR

Thank you for your attention!

NV centers as qubits

