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Dissipative dynamics of quantum vortices in superconducting arrays
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We consider a two-dimensional array of ultrasmall superconducting grains, weakly coupled by Josephson
junctions with large charging energy. We start from an effective action based on a microscopic tunneling
Hamiltonian, which includes quasiparticle degrees of freedom, and study the resulting dissipative dynamics of
quantum vortices. The equation of motion for a single vortex is deduced, and compared with a commonly
adopted phenomenological model.@S0163-1829~98!03505-X#
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Vortex dynamics plays an essential role in understand
the transport properties of superconducting systems in ex
nal magnetic fields. For instance, it is closely related to
Hall resistivity1 and low-temperature magnetic relaxation2

which has drawn much attention in the properties of vorti
in two-dimensional ~2D! and highly anisotropic three
dimensional superconductors.3 In addition, the dynamics o
vortices has been studied extensively in superconducting
rays as well,4 for which the recent advancement in fabric
tion techniques allows one to control the physical quanti
determining vortex dynamics, such as the vortex poten
the effective vortex mass, and viscosity. The supercond
ing arrays, therefore, provide a convenient model system
which various theoretical predictions can be compared w
experimental results. Further, they may also shed light
physics of the high-temperature ceramic superconduct
particularly in the polycrystalline form, which behave
many respects like random arrangements of weak links.

When the dimensions of the superconducting grains
the capacitances involved are small, the associated char
energy is non-negligible, and quantum dynamics of the ph
comes into play at the macroscopic level.5 In such an array
of ultrasmall junctions, the vortices, which are defined
plaquettes of the lattice, should be taken for quantu
mechanical objects. Here it is generally accepted that a
tex on a superconducting array is a rather well-defined po
like object with a finite effective mass,6,7 and feels frictional
force as well as nondissipative transverse force in its mot
although there has been long-standing controversy as to
actual determination of the latter.1,8 On the other hand, a
vortex is a macroscopic object by nature, which raises
question regarding how to macroscopically quantize the p
posed classical equation of motion for vortices in the pr
ence of frictional force. It is a commonly adopted recipe
quantum dynamics of vortices to assume a frictional fo
linearly proportional to the vortex velocity and then pheno
enologically quantize the resulting equation of motion a
cording to the Caldeira-Leggett procedure.9 However, it is
not obvious that the friction should depend linearly on t
vortex velocity, and the possibility of nonlinear behavi
may not be excluded in advance. Indeed recent nume
simulations of the dynamics of an array containing o
570163-1829/98/57~5!/2720~4!/$15.00
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single vortex appears to suggest the friction to be a nonlin
function of the vortex velocity.10 This makes it necessary t
investigate the quantum dynamics of vortices based o
model closer to the first principles, and desirable to obt
the effective action for vortices without phenomenologic
presumption.

This paper presents an attempt toward such a goal:
start from an effective action based on a microscopic mo
for a 2D array of Josephson junctions consisting of ult
small grains. In particular, we consider the case that
charging energy is non-negligible but still smaller than t
Josephson coupling energy, so that vortices are well defi
and show how the tunneling of quasiparticles introduces
sipation into the system. Using the dual form of the effect
action, which describes the system of dissipative quan
vortices, we obtain the semiclassical equation of motion fo
single vortex. We show that the damping on the vortex is
general nonlinear in the vortex velocity and nonlocal in tim
However, it turns out that the nonlinear contribution in mo
cases becomes negligibly small except at very short len
scales, and the frictional force in practice can be conside
to be linear in the vortex velocity, thus recovering the co
monly adopted phenomenological model.

An array of Josephson junctions can be described by
microscopic tunneling Hamiltonian11

H5(
i

Hi1(
^ i , j &

HT,i j 1(
^ i , j &

HC,i j , ~1!

whereHi represents the microscopic Hamiltonian, e.g.,
BCS reduced Hamiltonian, for thei th grain. The coupling
between neighboring islands results from the transfer of e
trons through the insulating barrier, described byHT,i j , and
from the Coulomb interactionHC,i j . HT,i j is characterized
by the Josephson coupling energyEJ whereasHC,i j is char-
acterized by the junction capacitanceC, self-capacitanceC0,
and the charging energyEC[e2/2C. Integrating out the qua-
siparticle degrees of freedom leads to a macroscopic mo
where thei th grain is characterized by the numberni of the
superconducting electrons~Cooper pairs! and the phasef i of
its superconducting order parameter.12 The resulting
2720 © 1998 The American Physical Society
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Ambegaokar-Eckern-Scho¨n ~AES! model gives the partition
function in the form of a functional integral

Z5 (
$ni ~t!%

E
0

2p

D@f#exp@2~S01SD!#, ~2!

where the Euclidean action is given by

S05E
0

b

dtF2 i(
i

niḟ i1
1

2K(
i , j

ni C̃i j
21nj

2K(
^ i , j &

cos~f i j 2Ai j !G , ~3!

SD5E
0

b

dtE
0

b

dt8(
^ i , j &

a~t2t8!H 12cosFf i j ~t!2f i j ~t8!

2 G J
~4!

with f i j [f i2f j . Here we have rescaled the~imaginary!
time in units of 1/vp , wherevp[A8ECEJ /\2 is the junc-
tion plasma frequency, and temperature in units of\vp .
Further, we have introducedK[AEJ/8EC and the dimen-
sionless capacitance matrix

C̃i j 5~C0 /C14!d i , j2d i , j 1 x̂2d i , j 2 x̂2d i , j 1 ŷ2d i , j 2 ŷ .

The bond angleAi j is given by the line integral of the vecto
potential due to the external magnetic field:Ai j

5(2p/F0)* i
jA•dl, so that the plaquette sum gives the fl

per plaquette in units of the flux quantum (F0[2p\c/2e)
or gauge-invariant~magnetic! frustration, (pAi j 52p f ĩ ,
where ĩ denotes the position of the plaquette. The quasip
ticle degrees of freedom are effectively included through
damping kernela(t) in the dissipative partSD given by Eq.
~4!. In case that the grains are ideal BCS superconduc
with energy gapD and normal-state resistanceRN , the
damping kernel is given by

a~t!5
D2

RN
K1

2~Dutu!

in the low-temperature limit (T→0), whereK1 is the modi-
fied Bessel function and we rescaled the gap energyD and
normal-state resistanceRN by D/\vp→D andRN /R0→RN ,
respectively. It should be stressed here that the damping
entirely originates from the intergrain quasiparticle tunnel
and includes neither the effects of the Cooper pair decay
the pool of normal electrons nor those of Ohmic shunt
tween grains.

A variety of properties of Josephson-junction syste
have been successfully described by the effective actio
Eqs.~3! and~4!. We thus employ the AES model as a go
starting point for an effective model for the dissipative d
namics of quantum vortices. For this purpose, it is con
nient to use the dual transformation, which rewrites
model in terms of the vortex variables instead of the origi
charge~Cooper pair! variables.13–15 In the presence of the
quasiparticle dissipation, the resulting effective mod
reads16
r-
e
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rm
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-
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l

Z5(
$nv%

E D@fv#exp@2~S0
v1SD

v !# ~5!

with

S0
v5E

0

b

dtF2 i(
i

ni
vḟ i

v12p2K(
i , j

~ni
v2 f i !Gi j ~nj

v2 f j !

2(
^ i , j &

1

4p2K
cosf i j

v G , ~6!

SD
v 5E

0

b

dtE
0

b

dt8(
^ i , j &

a~t2t8!H 12cosFu i j ~t!2u i j ~t8!

2 G J ,

~7!

where i , j now denote the dual lattice sites, i.e., the til
signs representing the dual lattice sites have been drop
for simplicity. The vortex charge~in units ofF0) ni

v and the
vortex phasef i

v ~of the macroscopic vortex wave function!
are conjugate to each other,Gi j is the lattice Green’s func-
tion, andu i[22p( jGi j nj

v .
We now investigate the dynamics of a single vortex,

cusing on the nature of the dissipation on the vortex. Suc
single vortex may actually be introduced by adjusting we
external magnetic field at zero temperature. For a vorte
position r (t), the dissipative action takes the form

SD
v 5E

0

b

dtE
0

b

dt8a~t2t8!W@r ~t!2r ~t8!#, ~8!

where the nonlocal self-interaction

W@r ~t!2r ~t8!#[ (
^rr 8&

F12cosS u rr 8~t!2u rr 8~t8!

2 D G
~9!

can be evaluated to reveal the logarithmic dependence

W@r ~t!2r ~t8!#'
p

2
lnF r ~t!2r ~t8!

a G , ~10!

aside from an irrelevant additive constant. The procedure
action minimization and analytic continuation12 then lead to
the semiclassical equation of motion describing the real-t
dynamics of a single vortex driven by an applied currentI ~in
units of the Josephson critical currentI J) in the x direction

2p2K r̈22E t

dt8a~ t2t8!¹ rW@r ~ t !2r ~ t8!#52pKI û3 ẑ.

~11!

The damping kernela(t) in the real-time domain may be
obtained by the analytic continuation

a~ t !5E
2`

` dv

2p
e2 ivka~ ivn→v1 i01!. ~12!

Alternatively,a(t) can also be obtained directly through th
use of the real-time formalism,9,17 which, for the actions in
Eqs. ~3,4!, givesa(t) related to the quasiparticle tunnelin
currentI qp(v) ~in units of I J) via12,18

ia~v!5KI qp~v!. ~13!
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Equation~11! is the most general semiclassical equat
of motion at length scales larger than the lattice constant
zero temperature (T50), the quasiparticle tunneling curren
is simply given by

Ĩ qp~v!5H 0, uṽu,2D

2gv, uṽu.2D,
~14!

whereg[1/vpRNC. This allows one to write the equation o
motion in a more explicit and appealing form. The dampi
kernel in this case reduces to

a~ t !52gK
d

dt
@d~ t !2D sinc~2Dt !#, ~15!

where sincx[(2/px)sinx. Here it should be noted that th
short-time behavior of Eq.~15! is valid only approximately,
because of the high-frequency cutoff ina(v). With this
simple form of the damping kernel, we finally obtain

r̈1g ṙ2g
D

p2E t

dt8sinc@2D~ t2t8!#W9@r ~ t !2r ~ t8!# ṙ ~ t8!

52
1

p
I ŷ, ~16!

which, at long time scales, Eq.~16! takes the more explici
form

r̈1g ṙ2gDE t

dt8sinc@2D~ t2t8!#
ṙ ~ t8!

pur ~ t !2r ~ t8!u2

52
1

p
I ŷ. ~17!

The semiclassical equation of motion given by Eq.~16! or
Eq. ~17! possesses two damping terms: One is linear, but
other is nonlinear in the vortex velocity and nonloc
~memory-dependent! in time. When the vortex velocity is
large, we haveṙ (t8)/ur (t)2r (t8)u2;1/v(t8) in Eq. ~17!, and
the nonlinear term becomes sufficiently small compared w
the ordinary linear friction term. For small velocities, on t
other hand, one must be careful about the short-wavele
cutoff19 present in the functionW(r ). ~Note that the con-
tinuum approximation has been used in the derivation of
equation of motion.! To examine the behavior at low veloc
ties, we have thus numerically integrated the equation
motion, and display the obtained frictional force as a fun
tion of the vortex velocity in Fig. 1. It is revealed that th
frictional force slightly deviates from the linear behavior
velocities smaller thanvc[D. It is of interest to note thatvc
may be written in the formvc5avJ /p ~in natural unit!,
which corresponds to vortex hopping by one lattice cons
during the characteristic time 1/vJ[\/2ueuRNI J associated
with the Josephson oscillation in a resistively shunted
sephson junction.

The above analysis demonstrates that the frictional fo
on a vortex ispractically linear in the vortex velocity, in
particular in the long-time and long-wavelength scale, wh
the semiclassical equation of motion is mostly concern
t
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Neglecting the nonlinear friction and rescaling the time
units of 1/vJ , we have Eq.~17! in the reduced form

pbcr̈1p ṙ52I ŷ, ~18!

which precisely corresponds to the commonly adopted p
nomenological equation of motion describing the resistiv
and capacitively shunted junction~RCSJ! model with the
Stewart-McCumber parameterbc[vJRNC.6 This is remark-
able in view of the fact that we have considered only qua
particle tunneling and neither the Ohmic shunt nor any ot
local damping sources have been included.

In conclusion, we have considered a microscopic mo
for a two-dimensional array of Josephson junctions, inclu
ing the quasiparticle degrees of freedom. From the effec
action, which has been obtained without any phenome
logical presumptions, the semiclassical equation of mot
for a single vortex has been deduced. It has been reve
that the quasiparticle tunneling produces friction on the v
tex motion. It includes a nonlinear term in addition to th
ordinary linear term although the nonlinear friction is in mo
cases dominated by the latter. At finite temperatures, the q
siparticle tunneling currentI qp(v) is smoothed out and ap
proaches the Ohmic behavior@i.e., I qp(v)}v#. In conse-
quence, the nonlinear friction term would become even l
pronounced and essentially negligible. Similarly, arrays
Josephson junctions betweend-wave superconductors ar
expected to display essentially linear behavior sinced-wave
superconductors have nodes in the momentum spac
which the energy gap vanishes. This leads to the quasip
cle tunneling current with no sharp threshold inv, even at
T50, separating the high-frequency Ohmic behavior and
low-frequency non-Ohmic behavior.20 It is of interest to
compare the nonlinear behavior found in this work with th
obtained in Ref. 10. In the latter, numerical integration of t
phenomenological RCSJ model has led to effective damp
in the vortex motion, which becomes nonlinear as the vel
ity increases. Here, unlike the existing phenomenological
proach, we have started from a microscopic model, and
rived explicitly the equation of motion for a vortex in th
system. The resulting damping term displays nonlinea
mainly in the low-velocity regime, which is in contrast wit
that obtained in the phenomenological approach. In addi
to the quasiparticle tunneling, spin-wave excitations m

FIG. 1. Behavior of the frictional force~in arbitrary units! as a
function of the vortex velocity. The dotted line represents the us
linear frictional force. The logarithmic scale should be noticed. T
values of the parameters areRN510.0 andKD51/8.
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provide another mechanism for the damping of vor
motion.21,22 Since the spin-wave excitation requires ener
of order of\vp ~Ref. 22! for \vp*D, it is rather irrelavant.
Furthermore, in the case of discrete charge states consid
here, the region where the spin-wave damping can be
nored gets wider.21 Nevertheless for\vp!D, however, con-
tributions of spin-wave excitations may not be disregard
and the investigation of the dissipation due to both the q
siparticle and spin-wave excitations will be a challengi
topic. Finally, we remark that we have considered only
single vortex motion. In the case of many vortices, t
d.

fo

J.
x
y

red
g-

,
-

e

vortex-vortex interaction becomes crucial, especially forC0

!C, which yields the logarithmically long interaction rang
The interaction effects, based on the highly suggestive ef
tive action in Eqs.~3! and~4!, will be an interesting topic for
further study.
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