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Dissipative dynamics of quantum vortices in superconducting arrays
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We consider a two-dimensional array of ultrasmall superconducting grains, weakly coupled by Josephson
junctions with large charging energy. We start from an effective action based on a microscopic tunneling
Hamiltonian, which includes quasiparticle degrees of freedom, and study the resulting dissipative dynamics of
guantum vortices. The equation of motion for a single vortex is deduced, and compared with a commonly
adopted phenomenological modgh0163-1828)03505-X]

Vortex dynamics plays an essential role in understandingingle vortex appears to suggest the friction to be a nonlinear
the transport properties of superconducting systems in extefunction of the vortex velocity® This makes it necessary to
nal magnetic fields. For instance, it is closely related to thdénvestigate the quantum dynamics of vortices based on a
Hall resistivity* and low-temperature magnetic relaxatfon, model closer to the first principles, and desirable to obtain
which has drawn much attention in the properties of vorticeghe effective action for vortices without phenomenological
in two-dimensional (2D) and highly anisotropic three- Presumption.
dimensional superconductotdn addition, the dynamics of ~ This paper presents an attempt toward such a goal: We
vortices has been studied extensively in superconducting affart from an effective action based on a microscopic model
rays as welf for which the recent advancement in fabrica- for @ 2D array of Josephson junctions consisting of ultra-
tion techniques allows one to control the physical quantitie$mall grains. In particular, we consider the case that the
determining vortex dynamics, such as the vortex potentialCharging energy is non-negligible but still smaller than the
the effective vortex mass, and viscosity. The superconductl0Sephson coupling energy, so that vortices are well defined,
ing arrays, therefore, provide a convenient model system, ofi"d show how the tunneling of quasiparticles introduces dis-
which various theoretical predictions can be compared wittfiPation into the system. Using the dual form of the effective
experimental results. Further, they may also shed light ofction, which describes the system of dissipative quantum

physics of the high-temperature ceramic superconductory,_orticesi we obtain the semiclassical equation of motion for_a
particularly in the polycrystalline form, which behave in Single vortex. We show that the damping on the vortex is in
many respects like random arrangements of weak links. general nqnhnear in the vortex veIQC|ty and ngnlo_cal in time.
When the dimensions of the superconducting grains an§lowever, it turns out'that the nonlinear contribution in most
the capacitances involved are small, the associated chargit§Ses becomes negligibly small except at very short length
energy is non-negligible, and quantum dynamics of the phas%cales_, and _the frictional force in practice can k_Je considered
comes into play at the macroscopic le¥éh such an array 0 be linear in the vortex veloc.lty, thus recovering the com-
of ultrasmall junctions, the vortices, which are defined onmonly adopted phenomenological model. .
plaquettes of the lattice, should be taken for quantum- An array of Josephson junctions can be described by the
mechanical objects. Here it is generally accepted that a vofhicroscopic tunneling Hamiltoniah
tex on a superconducting array is a rather well-defined point-
like object with a finite effective mags, and feels frictional
force as well as nondissipative transverse force in its motion, H= Z H+ Z Hrij+ E Heij 1)
although there has been long-standing controversy as to the ' (B (.0
actual determination of the lattt?. On the other hand, a
vortex is a macroscopic object by nature, which raises thavhereH; represents the microscopic Hamiltonian, e.g., the
question regarding how to macroscopically quantize the proBCS reduced Hamiltonian, for thigh grain. The coupling
posed classical equation of motion for vortices in the presbetween neighboring islands results from the transfer of elec-
ence of frictional force. It is a commonly adopted recipe fortrons through the insulating barrier, describedHby;; , and
quantum dynamics of vortices to assume a frictional forcérom the Coulomb interactiot ¢ ;; . Hy; is characterized
linearly proportional to the vortex velocity and then phenom-by the Josephson coupling enerfgy whereasH¢ ;; is char-
enologically quantize the resulting equation of motion ac-acterized by the junction capacitanCe self-capacitanc€,,
cording to the Caldeira-Leggett proceddrelowever, it is  and the charging enerdy-=€%/2C. Integrating out the qua-
not obvious that the friction should depend linearly on thesiparticle degrees of freedom leads to a macroscopic model,
vortex velocity, and the possibility of nonlinear behavior where theith grain is characterized by the numbegrof the
may not be excluded in advance. Indeed recent numericaluperconducting electroi€ooper pairsand the phase,; of
simulations of the dynamics of an array containing oneits superconducting order parametér.The resulting

0163-1829/98/5(6)/27204)/$15.00 57 2720 © 1998 The American Physical Society



57 BRIEF REPORTS

Ambegaokar-Eckern-SchgAES) model gives the partition

function in the form of a functional integral
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with ¢;j=¢;— ¢;. Here we have rescaled tfignaginary
time in units of 1b,, wherew,= JBECE; /%7 is the junc-
tion plasma frequency, and temperature in unitsfiaf, .
Further, we have introduce=\E;/8E. and the dimen-
sionless capacitance matrix
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The bond anglé\;; is given by the line integral of the vector

potential due to the external magnetic field;;

=(2w/d>0)f{A~dI, so that the plaquette sum gives the flux

per plaquette in units of the flux quanturd =27 c/2e)
or gauge-invariant(magneti¢ frustration, X A;;=27f7,

where denotes the position of the plaquette. The quasipar-
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wherei,j now denote the dual lattice sites, i.e., the tilde
signs representing the dual lattice sites have been dropped
for simplicity. The vortex chargén units of ®,) n{ and the
vortex phasep; (of the macroscopic vortex wave functjon
are conjugate to each othdg;; is the lattice Green’s func-
tion, and ;= —27Z;G;;nj .

We now investigate the dynamics of a single vortex, fo-
cusing on the nature of the dissipation on the vortex. Such a
single vortex may actually be introduced by adjusting weak
external magnetic field at zero temperature. For a vortex at
positionr(7), the dissipative action takes the form

B B
sp= | "ar | "dratr- -1 @
0 0

where the nonlocal self-interaction

l—COS( arr’(T)_zarr'(T ))
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ticle degrees of freedom are effectively included through the 9)

damping kernek(7) in the dissipative pars, given by Eqg.

(4). In case that the grains are ideal BCS superconductor@n be evaluated to reveal the logarithmic dependence

with energy gapA and normal-state resistand®y, the
damping kernel is given by

A? )
a(T)ZR—NKl(A|T|)

in the low-temperature limitT—0), whereK; is the modi-
fied Bessel function and we rescaled the gap ené&rggnd
normal-state resistané® by A/Awp,— A andRy/Ro— Ry,

respectively. It should be stressed here that the damping tern’éw
entirely originates from the intergrain quasiparticle tunneling
and includes neither the effects of the Cooper pair decay into

r(r)—r(r")

| o

T
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aside from an irrelevant additive constant. The procedures of
action minimization and analytic continuatiSrthen lead to

the semiclassical equation of motion describing the real-time
dynamics of a single vortex driven by an applied curietin

units of the Josephson critical currdg} in the x direction

ZKF—ZJtdt’a(t—t’)VrW[r(t)—f(t’)]ZZWKl uxz.
(11

the pool of normal electrons nor those of Ohmic shunt be‘l’he damping kernek(t) in the real-time domain may be

tween grains.

A variety of properties of Josephson-junction systems

obtained by the analytic continuation

have been successfully described by the effective action in © do .
Egs.(3) and(4). We thus employ the AES model as a good a(t)= Ee_""ka(iwnﬁwﬂoﬂ-
starting point for an effective model for the dissipative dy- -

namics of quantum vortices. For this purpose, it is convea|ternatively, a(t) can also be obtained directly through the
nient to use the dual transformation, which rewrites theyse of the real-time formalisft’ which, for the actions in
model in terms of the vortex variables instead of the originalEgs. (3,4), gives a(t) related to the quasiparticle tunneling
charge(Cooper pair variables:* ' In the presence of the currentl () (in units of I ;) vial?18

quaséigarticle dissipation, the resulting effective model ®
read

(12

la(w)=Klg(w). (13
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Equation(11) is the most general semiclassical equation 100 o
of motion at length scales larger than the lattice constant. At i
zero temperatureT(=0), the quasiparticle tunneling current
is simply given by

negative frictional force

T (@) 0, |o|<2A 14 'F E
| g @)= - 14
P 2y, |w|>2A,
01g E
wherey=1/w,R\C. This allows one to write the equation of e e
motion in a more explicit and appealing form. The damping v/ve

kernel in this case reduces to

d FIG. 1. Behavior of the frictional forcén arbitrary unit$ as a
a(t)=2yK a[é(t) —Asinq2At)], (15 function of the vortex velocity. The dotted line represents the usual
linear frictional force. The logarithmic scale should be noticed. The

where sing=(2/mx)sinx. Here it should be noted that the Values of the parameters &g =10.0 andKA=1/8.

short-time behavior of Eq15) is valid only approximately, ) ) o _ ) )
because of the high-frequency cutoff m(w). With this ~ Neglecting the nonlinear friction and rescaling the time in
simple form of the damping kernel, we finally obtain units of 1kw;, we have Eq(17) in the reduced form

L A [t ) Bt +ar=—1y, (18
r+yr— y—zj dt’sind 2A(t—t") JW"[r(t) —r(t")]r(t")
™ which precisely corresponds to the commonly adopted phe-
1 . nomenological equation of motion describing the resistively
=——ly, (16 and capacitively shunted junctiofRCSJ model with the
™ Stewart-McCumber parametgg= w;R\C.® This is remark-
able in view of the fact that we have considered only quasi-
particle tunneling and neither the Ohmic shunt nor any other
local damping sources have been included.
In conclusion, we have considered a microscopic model

which, at long time scales, E416) takes the more explicit
form

F+ yr— yAftdt’sinc[ZA(t—t’)]L for a two-dimensional array of Josephson junctions, includ-
wr(t)—r(t")|? ing the quasiparticle degrees of freedom. From the effective

action, which has been obtained without any phenomeno-

- _ £|§, (17) logical presumptions, the semiclassical equation of motion
™ for a single vortex has been deduced. It has been revealed

that the quasiparticle tunneling produces friction on the vor-

The semiclassical equation of motion given by Etf) or  tex motion. It includes a nonlinear term in addition to the
Eq. (17) possesses two damping terms: One is linear, but therdinary linear term although the nonlinear friction is in most
other is nonlinear in the vortex velocity and nonlocal cases dominated by the latter. At finite temperatures, the qua-
(memory-dependentin time. When the vortex velocity is siparticle tunneling currenit,() is smoothed out and ap-
large, we have(t')/|r(t)—r(t")|?~1/(t') in Eq.(17), and  proaches the Ohmic behavifie., | g,(w)xw]. In conse-
the nonlinear term becomes sufficiently small compared witlguence, the nonlinear friction term would become even less
the ordinary linear friction term. For small velocities, on the pronounced and essentially negligible. Similarly, arrays of
other hand, one must be careful about the short-wavelengthosephson junctions betweehwave superconductors are
cutoff'® present in the functioW(r). (Note that the con- expected to display essentially linear behavior sidegave
tinuum approximation has been used in the derivation of theuperconductors have nodes in the momentum space at
equation of motion.To examine the behavior at low veloci- which the energy gap vanishes. This leads to the quasiparti-
ties, we have thus numerically integrated the equation o€le tunneling current with no sharp thresholddn even at
motion, and display the obtained frictional force as a func-T=0, separating the high-frequency Ohmic behavior and the
tion of the vortex velocity in Fig. 1. It is revealed that the low-frequency non-Ohmic behavié?. It is of interest to
frictional force slightly deviates from the linear behavior at compare the nonlinear behavior found in this work with that
velocities smaller than.=A. It is of interest to note that,  obtained in Ref. 10. In the latter, numerical integration of the
may be written in the fornv.=aw;/7 (in natural uni}, = phenomenological RCSJ model has led to effective damping
which corresponds to vortex hopping by one lattice constanin the vortex motion, which becomes nonlinear as the veloc-
during the characteristic time &j=%/2|e|Ryl; associated ity increases. Here, unlike the existing phenomenological ap-
with the Josephson oscillation in a resistively shunted Joproach, we have started from a microscopic model, and de-
sephson junction. rived explicitly the equation of motion for a vortex in the

The above analysis demonstrates that the frictional forcsystem. The resulting damping term displays nonlinearity
on a vortex ispractically linear in the vortex velocity, in  mainly in the low-velocity regime, which is in contrast with
particular in the long-time and long-wavelength scale, wherdhat obtained in the phenomenological approach. In addition
the semiclassical equation of motion is mostly concernedto the quasiparticle tunneling, spin-wave excitations may
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provide another mechanism for the damping of vortexvortex-vortex interaction becomes crucial, especiallyGgr
motion?>?? Since the spin-wave excitation requires energy<C, which yields the logarithmically long interaction range.
of order ofiw, (Ref. 22 for Awy=A, it is rather irrelavant.  The interaction effects, based on the highly suggestive effec-
Furthermore, in the case of discrete charge states considergge action in Eqs(3) and(4), will be an interesting topic for
here, the region where the spin-wave damping can be igurther study.

nored gets widef* Nevertheless fofi wp<A, however, con- . . ) )
tributions of spin-wave excitations may not be disregarded, This work was supported in part by the Basic Science
and the investigation of the dissipation due to both the quaResearch Institute Program, Ministry of Education of Korea
siparticle and spin-wave excitations will be a challengingand by the Korea Science and Engineering Foundation
topic. Finally, we remark that we have considered only thethrough the SRC PrograitM.Y.C.). M.S.C. also acknowl-
single vortex motion. In the case of many vortices, theedges financial aid from the Seoam Foundation.
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