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In this Supplementary Material we comments on the build-up of our model Hamiltonian and pro-

vide the detailed derivation and analysis of the linear-response admittance and the corresponding

relaxation resistance. We also compare in detail the Majorana modes and the ordinary Andreev

bound states.
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I. MODEL HAMILTONIANS

The Hamiltonian for the Majorana edge modes is constructed based on that of the Dirac fermion edge

mode as given in Eq. (6) in the main text. In the absence of superconductivity, the Hamiltonian (6) is that

for the QAH edge mode. Via the relation ck = (γk,1 + iγk,2)/2, or inversely

γk,1 =
ck + c†−k√

2
and γk,2 =

ck − c†−k√
2i

, (S1)

the Dirac fermion Hamiltonian (6) turns into the Majorana fermion Hamiltonian (1). Proximity-coupled

to a s-wave superconductor, two Majorana fermion modes are spatially separated. However, they are still

degenerate in energy [1]. Therefore, the Hamiltonians (6) and (7) are valid in the cTSC2 phase. In the cTSC1

phase, the j = 2 Majorana mode becomes gapped so that it is missing. In our study, the disappearance of

j = 2 mode is accounted for by turning off its coupling to the dot: t2 = 0, see below.
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The build-up of the tunneling Hamiltonian between the Majorana fermion modes and the dot electron

starts with the fermionic coupling Hamiltonian which couples the QAH edge modes and the dot electron:

HQAH
tun =

∑
k

[
tkd
†ck + (h.c.)

]
, (S2)

where tk is the momentum-dependent tunneling amplitude. In terms of the MF operators, it reads

HQAH
tun =

∑
k

1√
2

[
tkd
†γk,1 + itkd

†γk,2 + (h.c.)
]
. (S3)

Upon the proximity-induced superconductivity, the overlaps between the Majorana modes and the dot elec-

tron become different for j = 1, 2 due to the different spatial localization of the Majorana modes [1]. So tk

now has the j-dependence, tk,j [2] so that one obtains the tunneling Hamiltonian (3) with |t1,k| > |t2,k|. In

terms of the Dirac fermion operator and dropping the k-dependence, the tunneling Hamiltonian is rewritten

as Eq. (7), in which the paring term, missing in the original QAH edge Hamiltonian, appears. Hence the

pairing term, whose amplitude is tpair = (t1 − t2)/
√

2, is due to the mismatch in the coupling of the dot

electron to two Majorana modes.

II. LINEAR-RESPONSE ADMITTANCE AND RELAXATION RESISTANCE

A. Self-consistent Linear-Response Theory

We consider a nanoscale capacitor (quantum dot) coupled to the Majorana fermion reservoir. A weak

time-dependent external gate voltage Vg(t) = Vac cosωt is applied on the quantum dot. In such a coherent

RC circuit, the AC transport is highly sensitive to the internal distribution of charges and potentials, which

needs to be calculated in a self-consistently manner to ensure the gauge invariance and current conservation

[3–7]. In the mean-field approximation, the time-dependent voltage Vg(t) induces the polarization charges

NU (t) between the dot and the gate, which in turn leads to the time-dependent potentialU(t) = |e|NU (t)/C

inside the dot. Consequently, the applied voltage not only generates a current I(t) between the lead and

the dot, but also induces a dot-gate displacement current Id(t) = e(dNU/dt) = −C(dU/dt). Charge

conservation requires I(t) + Id(t) = 0. Assuming that the gate-invariant perturbation, Vg(t) − U(t), is

sufficiently small, the linear response theory leads to the relation, I(ω) = g(ω)(Vg(ω) − U(ω)), where

g(t) = (ie/~) 〈[I(t), nd]〉Θ(t) is the equilibrium correlation function between the occupation operator

nd = d†d and the current operator I = e(dnd/dt). Note that the current-density correlation function

g(ω) is directly related to the charge susceptibility χc(t) = −i 〈[nd(t), nd]〉Θ(t), via the relation g(ω) =

iω(e2/~)χc(ω). Then, with the help of I(ω) = −Id(ω) = −iωCU(ω), the dot-lead impedance Z(ω) =

Vg(ω)/I(ω), which is experimentally accessible, is given by Z(ω) = 1/(−iωC) + 1/g(ω). Then, the
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relaxation resistance and the quantum correction to the capacitance is obtained by 1/g(ω) = Rq(ω) +

i/ωCq(ω). Explicitly, the relaxation resistance is given by

Rq(ω) = Re

[
1

g(ω)

]
=

Re[g(ω)]

Re[g(ω)]2 + Im[g(ω)]2
. (S4)

In the low-frequency limit, usually |Re[g(ω)]| � | Im[g(ω)]| (since Im[g(ω)] ∝ ω and Re[g(ω)] ∝ ω2) so

that

Rq(ω) ≈ Re[g(ω)]

Im[g(ω)]2
, (S5)

which means that the low-frequency relaxation resistance is proportional to the real part of the admittance.

Accordingly, we have examined Re[g(ω)] in the main text in order to estimate the amplitude of the dissipa-

tion.

B. Green’s Function and Admittance

While the admittance can be obtained in terms of the charge susceptibility, we instead follow the

Wingreen-Meir formalism [8, 9] which derives directly the current formula for arbitrary gauge-invariant

perturbation Vg(t) − U(t) and then obtains the admittance by considering the linear response only. Be-

fore following the formalism, it is convenient to apply a gauge transformation which transfers the time-

dependence from the QD Hamiltonian to the tunneling Hamiltonian. Under the time-dependent unitary

transformation U = exp[ i~S(t)] defined as

S(t) =

∫ t

dt′e(U(t′)− Vg(t′))nd, (S6)

the Hamiltonian is transformed into

H = HMajorana +HQD +Htun(t). (S7)

Here HMajorana is unchanged, HQD = εdnd, and

Htun =
∑
k

[
t1(t)d†γk,1 + it2(t)d†γk,2 + (h.c.)

]
(S8)

with tj(t) = tje
i∆(t) and

∆(t) ≡ i

~

∫ t

dt′e(U(t′)− Vg(t′)). (S9)

Based on the gauge-transformed Hamiltonian, it is quite straightforward to setup non-equilibrium

Green’s functions and Dyson equations for them. Since the Majorana fermion comes from the supercon-

ductivity, it is useful to express the Green’s function in Nambu space. The retarded/advanced/lesser QD
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Green’s functions are then written as

G
R/A
d (t, t′) = ∓iΘ(±(t− t′))

 〈|{d(t), d†(t′)}|〉 〈|{d(t), d(t′)}|〉

〈|{d†(t), d†(t′)}|〉 〈|{d†(t), d(t′)}|〉

 (S10a)

G<d (t, t′) = i

 〈|d†(t′)d(t)|〉 〈|d(t′)d(t)|〉

〈|d†(t′)d†(t)|〉 〈|d(t′)d†(t)|〉

 (S10b)

and their Dyson’s equations are found to be

G
R/A
d (t, t′) = g

R/A
d (t− t′) +

∫
dt′′
∫
dt′′′g

R/A
d (t− t′′)ΣR/A(t′′, t′′′)G

R/A
d (t′′′, t′) (S11a)

G<d (t, t′) =

∫
dt′′
∫
dt′′′GRd (t, t′′)Σ<(t′′, t′′′)GAd (t′′′, t′). (S11b)

Here ΣR/A/<(t, t′) are the self energies defined as

ΣR/A/<(t, t′) ≡
∑
k

M †(t)

~
g
R/A/<
k (t− t′)M(t′)

~
. (S12)

The QD-Majorana coupling matrix M(t) in the Nambu space is given by

M(t) ≡

t∗single −tpair

t∗pair −tsingle

 e−i∆(t)σ3 (S13)

and gR/A/<d (t) and gR/A/<k (t) are unperturbed equilibrium retarded/advanced/lesser QD and Dirac fermion

Green’s functions which are expressed in the frequency domain as

g
R/A
d (ω′) =

1

ω′ − σ3εd/~± i0+
, g<d (ω′) = 2πf(~ω′)δ(ω′ − σ3εd/~), (S14a)

g
R/A
k (ω′) =

1

ω′ − σ3εk/~± i0+
, g<k (ω′) = 2πf(~ω′)δ(ω′ − σ3εk/~), (S14b)

respectively. Here f(ε) is the Fermi distribution function at temperature T . In the absence of the AC driving

(∆(t) = 0), the Dyson’s equations lead to the equilibrium QD Green’s functions

G
R/A
d (ω′) =

[
g
R/A
d (ω′)− ΣR/A(ω′)

]−1
and G<d (ω′) = GRd (ω′)Σ<(ω′)GAd (ω′) (S15)

with the equilibrium self energies given by

ΣR/A(ω′) = ∓ i
2

Γ+ Γ−

Γ− Γ+

 and Σ<(ω′) = if(~ω′)

Γ+ Γ−

Γ− Γ+

 , (S16)

where Γ± is as defined in the main text. The explicit form of the equilibrium retarded/advanced Green’s

functions in Eq. (S15) are given by

G
R/A
d (ω) =

ω − εd ± iΓ+

2 ±iΓ−
2

±iΓ−
2 ω + εd ± iΓ+

2

−1

. (S17)
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In the presence of small AC driving, suppose that Vg(t)− U(t) ≡ Vac cosωt and accordingly,

∆(t) = −eVac

~ω
sinωt ≡ v sinωt. (S18)

Up to the linear order in v, the non-equilibrium QD Green’s functions are expanded as

G
R/A
d (ω′, ω′′) =

1

2π

∫
dt′
∫
dt′′ei(ω

′t′−ω′′t′′)G
R/A
d (t′, t′′)

= G
R/A
d (ω′)δ(ω′ − ω′′) +

v

2

(
(1 + ωG

R/A
d (ω′))σ3G

R/A
d (ω′ + ω)−GR/Ad (ω′)σ3

)
δ(ω′ − ω′′ + ω)

− v

2

(
(1− ωGR/Ad (ω′))σ3G

R/A
d (ω′ − ω)−GR/Ad (ω′)σ3

)
δ(ω′ − ω′′ − ω) (S19a)

G<d (t, t′) =

∫
dω′

2π
eiω
′(t′−t)

[
GRd (ω′)Σ<(ω′)GAd (ω′)

+
v

2

(
e+iωt(1 + ωGRd (ω′ − ω))− e−iωt(1− ωGRd (ω′ + ω))

)
σ3G

R
d (ω′)Σ<(ω′)GAd (ω′)

+
v

2
GRd (ω′)Σ<(ω′)GAd (ω′)σ3

(
e−iωt

′
(1 + ωGAd (ω′ − ω))− e+iωt′(1− ωGAd (ω′ + ω))

)]
.

(S19b)

For later use, we also need to define the QD-Dirac fermion Green’s functions G</>/t/t̄d,k similarly to the

QD Green’s functions: For example,

G<d,k(t, t
′) = i

 〈|c†k(t′)d(t)|〉 〈|ck(t′)d(t)|〉

〈|c†k(t
′)d†(t)|〉 〈|ck(t′)d†(t)|〉

 (S20)

and

Gtd,k(t, t
′) = −i

 〈|Tcd(t)c†k(t
′)|〉 〈|Tcd(t)ck(t

′)|〉

〈|Tcd†(t)c†k(t
′)|〉 〈|Tcd†(t)ck(t′)|〉

 . (S21)

The equation-of-motion method relates the QD-Dirac fermion Green’s functions to the QD Green’s func-

tions via the following Dyson’s equations:

Ĝd,k(t, t
′) =

∫
dt′′Ĝd(t, t

′′)
M †(t′′)

~
τ3ĝk(t

′′, t′), (S22)

where ĝk, Ĝd and so on are the matrix forms of the Green’s functions such as

ĝk ≡

gtk g<k

g>k gt̄k

 and Ĝd ≡

Gtd G<d

G>d Gt̄d

 (S23)

and τ3 are the Pauli matrix in the Keldysh space.

Now we are ready to express the current I(t) in terms of the QD Green’s functions. The current, being

the expectation value of the current operator e(dnd/dt), is expressed as

I(t) = e

〈
dnd
dt

〉
=
ie

~
∑
k

[
t∗single(t) 〈|c

†
k(t)d(t)|〉+ t∗pair(t) 〈|ck(t)d(t)|〉 − (h.c.)

]
=

2e

~
Re
∑
k

[
G<d,k(t)M(t)

]
11
.

(S24)
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Using the Dyson’s equation, Eq. (S22), the current can be written solely in terms of the QD Green’s function:

I(t) = 2eRe

∫
dt′
[
GRd (t, t′)Σ<(t′, t) +G<d (t, t′)ΣA(t′, t)

]
11
. (S25)

By substituting the linearized QD Green’s functions, Eq. (S19) into the current formula and performing a

tedious arrangement, the linear-response current with respect to the AC signal with frequency ω, Eq. (S18)

is obtained by

I(ω) =
evω2

2π

∫
dω′ f(~ω′)

[
GRd (ω′ − ω)σ3(GRd (ω′)−GAd (ω′)) + (GRd (ω′)−GAd (ω′))σ3G

A
d (ω′ + ω)

]
11
.

(S26)

In obtaining the above formula one has to use the following relations in equilibrium:

GRd (ω)Σ<(ω)GAd (ω) = f(~ω)(GAd (ω)−GRd (ω)), Σ<(ω) = −f(ε)(ΣR(ω)− ΣA(ω)),

and g−1
d G

R/A
d − ΣR/AG

R/A
d = G

R/A
d g−1

d −G
R/A
d ΣR/A = 1.

(S27)

Hence we arrive at the admittance g(ω) = I(ω)/Vac given by

g(ω) =
ω

RQ

∫
dω′f(ω′)

[
GRd (ω′ − ω)σ3{GRd (ω′)−GAd (ω′)}+ {GRd (ω′)−GAd (ω′)}σ3G

A
d (ω′ + ω)

]
11
.

(S28)

C. Relaxation Resistance at Zero Temperature

While the finite-temperature admittance is numerically calculated by directly using Eq. (S28), the zero-

temperature admittance allows the closed-form expression as given in Eq. (4) in the main text, by using the

integral ∫ 0

−∞

dx

x+ a+ ib
= ln

|b| − i(sgn b)a

|b| − i(sgn b)(−∞)
. (S29)

The zero-frequency relaxation resistance can be obtained by taking the ω → 0 limit:

R0 =
RQ
2

Γ1Γ2

Γ2
+

(
(ε/2)2

(εd/~)2 − ((2εd/~)2 + Γ1Γ2)Γc/8Γ+

)2

(S30)

with

Γc ≡
iΓ2
−
ε

ln
Γ+ − iε
Γ+ + iε

and ε ≡
√

(2εd/~)2 − Γ2
−. (S31)

Note that Γc is always real. The weak-coupling value of the resistance, Eq. (5) can be readily obtained by

taking the limit |εd/~| � Γ1 in Eq. (S30).
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Two important features of the zero-frequency resistance should be remarked here. First, the zero-

frequency resistance, Eq. (S30) vanishes exactly, R0 = 0 if the j = 2 Majorana mode is detached (Γ2 = 0),

irrespective of the QD level and the transmission of the tunneling barrier. Second, near the resonance

(|εd| � Γ1), R0, as a function of Γ2, has a local maximum in the interval 0 < Γ2 < Γ1. The maximum

occurs at Γ2 ≈ Γm ≡ 4ε2d/Γ1, and its height scales as ∼ [4γm ln γm]−1 with γm ≡ Γm/Γ1. Hence, as the

resonance comes closer, the maximum of the resistance diverges.

Now consider the finite-frequency resistance in the cTSC1 phase (Γ2 = 0). Since R0 = 0 in this phase,

the leading-order term of the low-frequency resistance with respect to the frequency should be of the second

order in ω. Explicitly,

Rq(ω) =
RQ
3

 (εd/~)2 − (Γ1/4)2

(εd/~)3

(
1− Γ1

4

i

ε
ln

Γ1/2− iε
Γ1/2 + iε

)


2

ω2 +O(ω4). (S32)

Equations (8) and (9) in the main text can be obtained by taking the limits |εd/~| � Γ1 and |εd/~| � Γ1,

respectively.

Interesting finite-frequency behavior arises at the resonance (εd = 0). In this condition, the j = 1 and

j = 2 Majorana modes 1 and 2 are completely decoupled as discussed in the main text and below. However,

two modes still interfere with each other in the electron transport, as can be seen in the expression of the

admittance:

g(ω) =
−iω
RQ

(
Γ1

ω2 − iΓ2ω − Γ+Γ−
ln

Γ2 + i(2ω)

Γ2
+

Γ2

ω2 − iΓ1ω + Γ+Γ−
ln

Γ1 + i(2ω)

Γ1
− 2Γ−

Γ2
− + ω2

ln
Γ2

Γ1

)
.

(S33)

In the cTSC1 phase, the finite-frequency resistance is then obtained by setting Γ2 = 0 so that

Rq(ω) = RQ
ω2 + (Γ1/2)2

Γ1|ω|
π/2

(π/2)2 + (ln(2|ω|/Γ1))2
(S34)

which is approximated as Eq. (10) in the ω → 0 limit. Therefore, it exhibits a divergence at zero frequency.

D. All-Majorana Representation

As proposed in the main text, all the fermion operators in the Hamiltonian, including the QD electron

operator, can be, at least mathematically, decomposed into the Majorana fermion operators. Defining two

QD Majorana operators γd,j (j = 1, 2) by γd,1 = (d − d†)/
√

2i and γd,2 = (d + d†)/
√

2, the QD and
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tunneling Hamiltonians are rewritten as

HQD = i(εd + e(U(t)− Vg(t))γd,2γd,1 (S35a)

Htun =
∑
k

i(t2γd,2γk,2 − t1γd,1γk,1), (S35b)

respectively. These equations become Eq. (11) in the main text in the DC limit (Vg(t) = U(t) = 0). In

deriving the above Hamiltonians, we assume that the tunneling amplitudes are real: tj = t∗j , which can

be always satisfied via a proper gauge transformation. Applying the time-dependent unitary transformation

U = exp[ i~S(t)] as defined in Eq. (S6), the time-dependence moves into the tunneling Hamiltonian so that

we have

HQD = iεdγd,2γd,1 (S36a)

Htun =
∑
k

i [−t1 cos ∆(t)γd,1γk,1 + t1 sin ∆(t)γd,2γk,1 + t2 sin ∆(t)γd,1γk,2 + t2 cos ∆(t)γd,2γk,2] .

(S36b)

It should be noted that in the DC limit the j = 1 and j = 2 Majorana modes are completely decoupled at

the resonant condition (εd = 0). However, the gauge-transformed Hamiltonian (S36) shows that a finite ac

driving effectively couples the j = 1 and j = 2 Majorana modes even if the dot level is zero (εd = 0).

This is the reason why the two Majorana modes interfere with each other in the electron transport even at

resonance (see Eq. (S33)).

Now we follow the procedure of the linear-response theory as done in Sec. 2B by redefining the QD

Green’s function in terms of the Majorana fermion operators:

G
R/A
d,M (t, t′) = ∓iΘ(±(t− t′))

〈|{γd,1(t), γd,1(t′)}|〉 〈|{γd,1(t), γd,2(t′)}|〉

〈|{γd,2(t), γd,1(t′)}|〉 〈|{γd,2(t), γd,2(t′)}|〉

 . (S37)

In fact, the forms of the Dyson’s equations for Majorana Green’s functions are identical to those in Sec.

2B except that all the Green’s functions are properly replaced by the Majorana-based ones. Finally we then

obtain the admittance

g(ω) =
ω

RQ

∫
dω′f(ω′) tr

{[
GRd,M (ω′ − ω)σ2{GRd,M (ω′)−GAd,M (ω′)}

+ {GRd,M (ω′)−GAd,M (ω′)}σ2G
A
d,M (ω′ + ω)

] σ0 + σ2

2

}
. (S38)

Here the appearance of additional Pauli matrices is owing to the unitary transformation from the QD fermion

operator to the Majorana fermion operator. The equilibrium retarded/advanced QD Green’s functions are
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given by

G
R/A
d,M =

(
[g
R/A
d,M (ω)]−1 − ΣR/A(ω)

)−1
=

ω ± iΓ1

2
−iεd/~

iεd/~ ω ± iΓ2

2


−1

. (S39)

The Green’s functions, whose off-diagonal components vanish at εd = 0, reflect that the two modes are

decoupled at resonance. The real and imaginary parts of the diagonal components of the Green’s functions

can be expressed in terms of the density of states ρj(ω) in such a way that

Im[GRd,M ]jj(ω) = −π~ρj(ω) (S40a)

Re[GRd,M ]jj(ω) =
1

π
P
∫
dω′

Im[GRd,M ]jj(ω
′)

ω′ − ω
= −P

∫
dε′

ρj(ω
′)

ω′ − ω
. (S40b)

At resonance, the density of states becomes of the Lorentzian form:

ρj(ω) =
1

π~
Γj/2

ω2 + (Γj/2)2
. (S41)

The admittance at resonance can be simplified into

g(ω) =
hω

RQ

[
iP
∫ ∫

dε′dε′′

ε′′ − ε′
(
f(ε′ − ~ω)− f(ε′′)

)
ρ1(ω − ω′)ρ2(ω′′)

+ π

∫
dε′
(
f(ε′ − ~ω)− f(ε′)

)
ρ1(ω − ω′)ρ2(ω′)

]
(S42)

with ε′ = ~ω′ and ε′′ = ~ω′′ and P meaning the principal value. At zero temperature, it is further simplified

into

g(ω) =
hω

RQ

[
π

∫ ~ω

0
dε′ ρ1(ω − ω′)ρ2(ω′) + iP

∫ 0

−∞
dε′
∫ ∞

0
dε′′

2(ε′′ − ε′)
(ε′′ − ε′)2 − (~ω)2

ρ1(ω′)ρ2(ω′′)

]
,

(S43)

justifying Eq. (12) in the main text.

E. Relaxation Resistance at Finite Temperatures: Sommerfeld Expansion

It is difficult to obtain an analytical expression for finite-temperature resistance. However, the low-

temperature behavior can be examined by using the Sommerfeld expansion, which expands the integral

as ∫
dεf(ε)h(ε) =

∫ 0

−∞
dεh(ε) +

∞∑
n=1

α2n(kBT )2nh(2n−1)(0), (S44)
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where α2n = 2ζ(2n)(1− 21−2n). Then, up to the second order in kBT , one obtains

g(ω) ≈ g(ω)|T=0

− 1

RQ

(
kBT

~

)2 π2

6

[∑
µ

(
Γ+

Γ+ + iω
+

Γ2
−

ε(ε− µω)

)(
1

(ω − iΓ+/2− µε/2)2
− 1

(iΓ+/2 + µε/2)2

)

+
2Γ2
−ω

ε(ε2 − ω2)

(
1

(iΓ+/2 + ε/2)2
− 1

(iΓ+/2− ε/2)2

)]
.

(S45)

For the Dirac fermion edge mode (Γ1 = Γ2), the zero-frequency resistance at low temperatures is then given

by

R0 =
RQ
2

[
1 +

4π2

3

(
kBT

εd

)2( (εd/~)2

(εd/~)2 + (Γ+/2)2

)2
]
. (S46)

On the other hand, in the cTSC1 phase (Γ2 = 0), the Sommerfeld expansion of R0 is expressed as

R0 = RQ

(
kBT

εd

)2 4π2

3

(
(εd/~)2 − Γ2

+

(εd/~)2

)2(
1− iΓ+

ε
ln

Γ+ − iε
Γ+ + iε

)−2

. (S47)

Note that the stark contrast between two cases at the resonance (εd = 0): In the QAH phase the second-

order term vanishes, indicating some immunity to thermal fluctuations, while R0 diverges in the cTSC1

phase. Surely the above expansion for the case of a single Majorana fermion edge mode is valid only for

kBT � ~Γm so the εd → 0 limit cannot be taken from it. But still the non-monotonic behavior or the

increase of the resistance at finite temperatures, discussed in the main text, are qualitatively captured in this

expansion. In the case of weak-coupling limit (|εd/~| � Γ1), the expansion leads to Eq. (13).

III. COMPARISON WITH THE CASE WITH ANDREEV EDGE MODES

A. Andreev Edge Modes: Conventional Andreev Edge Mode vs. Majorana Mode

Majorana Fermion edge mode is a special case of “Andreev edge modes,” i.e., the Andreev bound states

localized at (yet propagating along) the edge of the superconducting film. Suppose either that the su-

perconducting order parameter is suppressed close to the edge of the superconducting film or that a thin

conducting wire is in contact with the superconducting film [see Fig. S1(a)]. In either case, there forms

a superconductor-normal junction between the superconducting region and the thin normal conducting re-

gion. As quasi-particles with energy lower than the superconducting gap ∆ cannot penetrate into the su-

perconducting region, they are confined in the normal region [10–12], forming a one-dimensional mode
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FIG. S1. (a) Superconductor-normal junction between superconducting thin film and a thin conducting wire. (b)

Schematic energy configuration of the system on (a).

propagating along the edge direction. When the superconducting state is topologically non-trivial, the An-

dreev edge mode has the Majorana fermion character protected against local fluctuations and disorders (see,

e.g., [13, 14]).

With regard to the charge relaxation resistance, all Andreev edge modes (irrespective of whether they are

Majorana or not) have one important common property: As they originate from the Andreev reflection at

the superconductor-normal interface, they are mixtures of particles and holes with comparable amplitudes.

However, Majorana edge modes has two distinguished differences compared with conventional Andreev

states: First, Majorana edge mode is gapless while conventional Andreev edge mode has a finite excitation

gap. Second, Majorana mode is “real” and only a half of Dirac fermion while Andreev edge mode consists

of usual Dirac fermion. In this section, we examine the effects of the similarity and differences on the

charge relaxation resistance in a quantum capacitor-resistor circuit.

B. Model for Conventional Andreev Edge Mode

We follow Ref. [12] to consider a simplest possible model for a conventional Andreev edge mode. We

assume an s-wave superconductor and the normal conductor is a semiconducting nanowire in the ballistic

regime. The latter assumption is to avoid disorder effect, which is certainly interesting on its own but out

of scope of the current work. As shown in detail in [12], the Andreev states bound in the normal region

is effectively described by the proximity-induced pairing potential ∆ind. Namely, the dispersion relation of
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the Andreev states is given by

εk =
√

∆2
ind + (ξk − δµ)2, (S48)

where ξk ≡ ~2k2/2m − EF (with k being the momentum along the edge direction) is the kinetic energy

relative to the Fermi level and δµ is additional shift in the chemical potential. To compare with the case

of Majorana states, we further assume low transparency of the interface between the superconducting and

normal region, where ∆ind, δµ� ∆. Therefore, the Hamiltonian for the lead [to be compared with Eqs. (1),

(5) and (7a) in the main text] is given by

HAndreev =
∑
kσ

εkb
†
kσbkσ (S49)

where bkσ is the Bogoliubov quasi-particle operator with spin σ and momentum k along the edge. The

tunneling Hamiltonian [to be compared with Eqs. (3), (6) and (7b) in the main text] reads as

Htun = t
∑
kσ

[
sign(σ)A∗kb

†
kσ +Bkbkσ̄

]
dkσ + h.c. (S50)

where σ̄ means the spin direction opposite to σ. Here Ak and Bk are proportional to the proximity-induced

BCS coherence factors [15]

Ak ∝

√
1

2

[
1 +

(ξk − δµ)

∆ind

]
, Bk ∝

√
1

2

[
1− (ξk − δµ)

∆ind

]
. (S51)

Essentially, Ak (Bk) is responsible for single-electron (pair) tunneling process. We note that there is addi-

tional momentum dependence of the relative strength of the amplitudes, Ak and Bk, of the two processes

(Ak ≈ Bk for k = kF ) while in Eq. (6) in the main text the relative strength, tsingle/tpair, is momentum

independent (except for weak dependence depending on the system details).

A remark is in order: To compare with the case with Majorana modes, we have to consider spinful level

on the quantum dot. It is because if the quantum dot is spin polarized, then the single-particle and pair

tunneling process involves the distinct modes of opposite spins and the feature of particle-hole mixture in

the Andreev states does not play any role.

C. Linear Response Theory

Now we apply the linear response theory, following the exactly same procedure as in the previous sec-

tions, to the s-wave Andreev edge modes in order to obtain the admittance through the quantum dot which

is now coupled to the Andreev modes. Since the structure of Hamiltonians, Eqs. (S49) and (S50) is basi-

cally identical to that of Eqs. (5) and (6) in the text, respectively, the linear response theory results in the
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FIG. S2. Zero-temperature resistance Rq(ω) as a function of frequency ω for (a,b) the weak-coupling case (Γ/∆ind =

0.1) and (c) the strong-coupling case (Γ/∆ind = 10). Each curve corresponds to different value of εd/∆ind which is

annotated in the figure. The dotted lines indicates the minimal energy of p-h pairs, ~ω = 2∆ind.

same expression for the admittance as given in Eq. (S28) except two points. First, an additional factor 2

is multiplied. It is because we are considering the s-wave superconductor which has two degenerate spins.

Each of spin channels makes the same contribution so that the admittance is doubled compared to the spin-

polarized p-wave case. Second, since the QD-edge mode tunneling is inevitably momentum-dependent via

the coefficients Ak and Bk, the self energy for the QD Green’s function

G
R/A
d (t, t′) = ∓iΘ(±(t− t′))

〈|{d↑(t), d†↑(t′)}|〉 〈|{d↓(t), d↑(t′)}|〉
〈|{d†↑(t), d

†
↓(t
′)}|〉 〈|{d†↓(t), d↓(t

′)}|〉

 (S52)

is now also energy-dependent:

ΣR/A(ω′) =
Γ

2

ω′σ0 − (∆ind/~)σ1

i
√

(ω′ ± iη)2 − (∆ind/~)2
(S53)

with

√
(ω′ ± iη)2 − (∆ind/~)2 =


i
√

(∆ind/~)2 − ω′2, ∆ind > ~|ω′|

± signω′
√
ω′2 − (∆ind/~)2, ∆ind < ~|ω′|.

(S54)

Here, in obtaining the self energy, we have assumed for simplicity that the effective Fermi level is high

enough that the dispersion relation ξk − δµ around the Fermi level is well linearized. The relaxation re-

sistance Rq(ω) = Re[1/g(ω)] is then obtained by numerically integrating Eq. (S28) with the self energy,

Eq. (S53).

D. Relaxation Resistance: Below the Superconducting Gap

Here we focus on the zero temperature case (kBT = 0). Figure S2 displays the resistance Rq(ω) as a

function of frequency ω for the weak- and strong-coupling cases for several values of εd. First, consider the
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frequency ω smaller than 2∆ind. In this region, the zero-temperature resistanceRq(ω) vanishes completely,

independent of the strength of the QD-reservoir coupling. This is consistent with our previous argument

based on the p-h pairs: No p-h pair with the energy less than 2∆ind cannot be generated due to the (induced)

superconducting gap so the resistance for the frequency below 2∆ind is zero. At finite temperatures, the

thermal fluctuations will relax this energy conservation constraint, giving rise to finite Rq(ω) for ~|ω| <

∆ind. However, the resistance should be still exponentially small if kBT � ∆ind. This is one of main

differences distinguishing between the Majorana fermions and the ordinary Andreev modes.

It should be also noted that the resistance at ~ω = 2∆ind is still zero. It might look unphysical consid-

ering that the density of states (DOS) is divergent at the superconducting gap: The large DOS is expected

to enhance the generation of p-h pairs with the energy 2∆ind. However, at this energy, Ak = Bk so that the

destructive interference between the single-electron and pair tunneling processes, discussed in the text, is

maximal so that the resistance vanishes. For the Majorana fermion case, it happens at zero frequency, while

it is moved to 2∆ind for the s-wave Andreev modes. It also explains a rather rapid increases of Rq(ω) with

increasing ω just beyond 2∆ind. The increase in Rq(ω) results from the still large DOS and the gradual lift

of the destructive interference condition (Ak 6= Bk).

E. Relaxation Resistance: Above the Superconducting Gap

Now we turn to the relaxation resistance Rq(ω) at high frequencies: ω ≥ 2∆ind. It behaves differently

depending on the coupling strength. We examine two representative chases; first the weak-coupling case

(Γ/∆ind = 0.1) and later the strong couplling case (Γ/∆ind = 10). In the weak-coupling case, as mentioned

above, there is a rather rapid increase in Rq(ω) just beyond 2∆ind, which forms a peak or a cusp near

~ω = 2∆ind, depending on the value of εd. For |εd| ≤ ∆ind, that is, when the QD level is inside the

superconducting gap, there exists no other feature than a monotonic increase of Rq(ω) with increasing ω

beyond 2∆ind [see Fig. S2(a)]. In addition, the peak height near ~ω = 2∆ind decreases as εd approaches the

gap boundary. Once the QD level εd goes out of the gap, additional features arise: see Fig. S2(b). Additional

enhancement of the resistance is observed at ~ω = |εd| + ∆ind (> 2∆ind) and 2|εd| (> 2∆ind), at which

additional peaks or cusps in Rq(ω) are formed. At these frequencies the p-h pair generation is assisted by

the resonance between the QD level and the superconducting quasi-particle. The resonance can also affect

the peak near ~ω = 2∆ind if |εd| & ∆ind: see εd/∆ind = −1.5 case in Fig. S2(b). It is the result of the

interplay between the QD resonance and the large DOS near the gap boundary. Therefore, the height of the

peak near ~ω = 2∆ind rapidly surges at |εd| ≈ ∆ind and then decreases again with increasing |εd|.

Before discussing the strong-coupling case, we summarize the differences in the finite-frequency behav-
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ior of Rq(ω) for the Andreev edge modes and for the Majorana edge modes. While in both cases Rq(ω)

varies non-monotonically with frequency, the dependence of the peak/cusp position on the QD level εd ex-

hibits a clear difference: In the Majorana fermion case, the peak position scales with Γm ∝ ε2d, while in the

Andreev mode case the peaks are pinned at 2∆ind or have a linear dependence on εd. Also, while in the

former case the peak height increases monotonically with decreasing |εd| or as approaching the resonance

[see Fig. 4(b)], in the latter case the peak height varies non-monotonically with εd since the finite gap 2∆ind

is introduced.

Finally, the strong-coupling case (Γ/∆ind = 10) is examined [see Fig. S2(c)]. The strong tunneling

smears out the peak/cusp structures by widening the QD level. Hence, no special feature remains. The

resistance remains small for low frequencies, no matter what values εd has: Fig. S2(c) shows that Rq(ω)→

RQ/4 6= 0 (here RQ/4 rather than RQ/2 because of two spin components) as ω → 0 (keeping ω > ∆ind).

In real experiments, ∆ind might be so small that typical samples might have Γ > ∆ind. Our results show

that even in this case the Majorana fermion reservoir (having a vanishingly small gap) and the Andreev edge

modes (having a finite but small gap) exhibit distinctive behavior of Rq(ω) with respect to the frequency

and the QD level.

F. Summary of Differences between s-wave Andreev Edge Mode and Majorana Mode

Here we summarize the major differences between s-wave Andreev edge mode and Majorana mode:

1. Rq(ω) = 0 identically for all 0 < ω ≤ 2∆ind in the Andreev case while Rq(ω) ∝ ω2 as ω → 0 in

the Majorana case.

(a) For large gap (∆ind � Γ1), this difference is evident.

(b) For small gap (∆ind � Γ1), where the gap is difficult to resolve experimentally, Rq(ω) →

RQ/4 6= 0 (here RQ/4 rather than RQ/2 because of two spin components) as ω → 0

(keeping ω > ∆ind) in the Andreev case. This is shown in Fig. S2(c) and in contrast with

limω→0Rq(ω)→ 0 in the Majorana case.

2. Rq(ω) at higher frequencies may be non-monotonic for both cases. However, the peak positions

behave distinctively:

(a) In the Majorana case, the peaks are at ω ≈ Γm = 4ε2d/Γ1. This is shown in Fig. S2(b).

(b) In the Andreev case with ∆ind � Γ1, the peaks are at ω ≈ 2∆ind. There may be additional

peaks at ω ≈ ∆ind + |εd| when |εd| > ∆ind. This is shown in Figs. S2(a) and (b).
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(c) In the Andreev case with ∆ind � Γ1, Rq(ω) is almost monotonic and independent of εd. This

is shown in Fig. S2(c).

In conclusion, the Majorana fermion reservoir is well distinguished from the s-wave Andreev edge

modes in the frequency- and QD-level-dependence of Rq(ω). So the ac response can be used to detect the

existence of the Majorana fermions unambiguously.
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[4] M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).
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