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Conductivity distribution of resistor-capacitor composites
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Conductivities of the N XN percolation systems with resistors and capacitors mixed near the percola-
tion threshold pc were calculated. The statistical distribution of these conductivities were obtained after
more than 10* configurations considered. We have shown that the argument of Rammal et al., which is
only for the case of dc response, can be properly extended to the case of nonzero capacitances (ac
response). Some other interesting features, including the functional form, of the distribution were dis-
cussed as a function ofthe ratio az/coo with (42051/RC.

L INTRODUCTION

In a percolation system near the percolation threshold
pc, the percolation cluster forms a fractal;1*2 hence on a
length scale less than the correlation length, the local
Huctuations of physical quantities are serious. Further-
more, the responses of such a system are affected by the
local fluctuations, especially, by that of the ac conductivi-
ty 0(x,co), or equivalently the complex dielectric constant
e(r,w) in the system. Thus, the distribution of the mac-
roscopic conductivity 2 of a percolation system is very
important in understanding the physical properties of the
system. In spite of its importance, however, little study
of the conductivity distribution has been done.

For the dc case, where the admittances for the insulat-
ing bonds vanish, Rammal, Lemieux, and Tremblay ob-
tained distribution by a computer simulation.3 In their
simulation, they found that the distribution is a function
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)FIG. 1. The strip is constructed bond by bond. Each time we

add a new impedance (Z or Z'), the matrix A is modified (to A '
or A") (see Ref. 8). . .

of a single variable 2/2,,, (in this case, 2 and 2,, are
real) and that its relative width A2 /2,, is independent of
geometrical details. Our result in this limiting case is
consistent with theirs.

For the ac conductivity distribution of a peréolation
system near pc, we present here another computer simu-
lation using the transfer-matrix method. For this calcu-
lation, we assumed nonzero admittances of i mC for insu-
lating (nonoccupied) bonds and the typical admittances
l/R for the metallic (occupied) bonds. For simplicity, we
introduced coo defined as coo?-1/RC. Then the distribu-
tion of the complex conductivity 2 was analyzed by its
contour map on a complex conductivity plane while
changing the ratio cv/moito'.

The importance of the ac conductivity distribution was
emphasized recently when experimental results for the
optical response of the metal—insulator composite were ex-
plainedf" The theoretical calculation by Yagil and co-
workers of the optical response was sensitive to the distri-
bution of the ac conductivity. In their scaling theoretic
study they conjectured a direct extension of the results
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FIG. 2. The conductivity distribution in the limiting case
C =0, along the real axis for the percolative peak. The solid
line is a log-normal distribution function Htted with
Re(2,,)ʻ—=9.23 and oy, =0. 44.
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40 FIG. 3. Contour maps for the conductivity
distribution of the 10X10 system as the fre-
quency w' increases. (a) cv'=10`° (b) wʼ=10"ʻ

,
(9)_ 

g2ʼ=1O,"2 (d) cq'r=10_7
ʻ 

(§)ico'#10fʼ. The
horizontal and vertical axes are those of Re(2)
and Im( 2 ), respectively.

Rammal, Lemieux, and Tremblay to the ac case.7 They
assumed that, near pc, the conductivity distribution is a
function of the single variable 2/2,, with its relative
width independent of the frequency. From our simula-
tion, however, we found that. the ac conductivity distribu-
tion does not follow this conjecture.

In the next section, we present a simulation method we
used to calculate the ac conductivity. In Sec. III, we give
our results including a quantitative analysis of the distri-
bution functions.

II. SIMULATION METHOD

We used the transfer-matrix algorithm to calculate the
conductivity of each percolation square of N XN. This
algorithm, which was developed by Derrida and co-
workers to calculate the t exponent of a metal-insulator
composite,8*° was further developed for the s exponent of
a metal-superconductor composite.l° This method can be
applied even to a percolation system with insulating
bonds of nonvanishing admittzmces.u*

12In the transfer-matrix algorithm, the admittance ma-
trix A is introduced, whose elements Aij are updated to
Aé and Ag when a horizontal and a vertical bond, re-
spectively, are inserted. Here we just give the formalism'l""""J1 *- ʻ ···—·—-~—· ——-—·

—· 
·-v JV`, U,. , ,,,_ __,

of the method:

A!_=A__-   
U U 1+AmZ ʼ

O \

A:y=A,}—|— .-6 _)Z: l ,

;(1)

ʻ (2)

where Z and Z ̓  are the impedances of the inserted bond
(Fig. 1).

HI. RESULT

Bond percolation systems of size N XN for N =5, 10,
and 15 were considered. The probability p of the metallic
occupation was chosen to be the percolation threshold
pc =0.5. As mentioned above, we assigned the admit-
tance 1/R once a

q 
bond is occupied, but i mC if it is not

occupied. For the statistical analysis, we generated more
than l04_conf1gurations for each N and co'Eco/coo. We
used the contour maps to display the general behavior of
the conductivity distribution.

For the validity test of our simulation, we show theʼhis-
togram for coʼ=O in Fig. 2. We found that the distribu-
tion fits a log-normal distribution function (see the Ap-
pendix) of the single variable 2/ 2,, and that, as observed
by Rammal, Lemieux, and Tremblay, the relative width
A2 /2,,, is independent of the size N.

After investigating the behavior of the conductivity
distribution as a function of the frequency (co'), we found
several interesting features. The main features of our cal-
culations are as follows (Fig. 3): (a) Two peaks in the dis-
tribution merge and then separate again as co' increases.
(b) As w' increases, the shape of the distribution rotates.
(c) The distribution for the frequency co'. is similar to the
reflected image of that for the frequency 1 /mʼ against the
ray 2=r exp[i·n·/4], 0<r < oo. (d) For co' << l0`1, the
distribution fits a log-normal distribution function, but
elsewhere it cannot be iitted to any simple analytic func-
tion.
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FIG. 4. ;The separate observations of distri-
bution for the 10X 10 system: (a) the collec-
tion of percolative lattices, (b) the collection of
nonpercolative lattices, (c) the overall. The
horizontal and vertical axes are those of Re(2)
arid Im( 2)- resnectivelv.
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FIG. 5. Contour maps of the two-
dimensional log-normal distribution function.
(a) ·r;,,=·n_,=O.45 (b) 11,

, 
=·q_, =O.2O (c)

*q,,=·qy=0.12. The horizontal and vertical
axes are those of Re(2) and Im(2), respective-
ly. _

We discuss the details of the conductivity distribution
in the two typical regions: m' <<1o·ʻ and co'=l. The
high-frequency limit is simply guessed from the low-
frequency limit by means of the symmetry argument.
Furthermore, for convenience of discussion, we classify
each configuration in the ensemble into the percolative or
the nonpercolative lattice according to whether it has a
percolating cluster or not.

A. Low-frequency region (m' << l0'l)

2=x -i-iy , i (4)

2¤,=ax+ia}, , (5)

sx=l+·1yx , r (6)

(7)_1 +17Y -sy "

From the calculation we obtained the relative width of
oy, =·n,, =0.45 for both the percolative and the nonper-
colative peaks.

In this region, the origin and the merging behavior of
the two peaks can be understood in a simple way. First,
the two peaks originate from the percolative andthe non-
percolative lattices, respectively. This is confirmed by
considering the distribution of the percolative and the
nonpercolative lattices separately. Each peak in the
separate distributions is identical to the corresponding
one in the original overall distribution (Fig. 4), so that
the merging of the two peaks as increasing w' is straight-
forward. As m' increases from the low capacitive cou-
pling region, the imaginary part of the total admittance
for the percolative lattice increases and the percolative
peak moves to the point on the ray 2=rexp[i1r/4],
0<r < cc. For the nonpercolative lattices, the real part
of the admittances increase under the influence of the in-
creasing ia>C. Once the magnitude of i wC is comparable
with that of 1/R, the real and imaginary part of the two
peaks should be in the same region, and the two peaks
merge into one. ʻ

Furthermore, the distribution fits quite well a two-
dimensional log-normal distribution function (Fig. 5):

P(x.v)<¤exo i—— i I

where

—·¤x-
· 

  2 sg i I

Xex
p 

[`?T I

,.,•v.. \· *6.

(3)

B. The region a>'=¤1

In this region, the distribution function (3), which is
good for co' <<10`], is not satisfactory. The shape of the
distribution rotates smoothly with increasing az'. Fur-
thermore, the relative widths 1;,, and 1],, are much re-
duced. The deviation of the distribution function near
co' wl motivates us to modify the distribution function in-
troducing another characteristic parameter ·y:

1 ln2(x/ax)P(x,J
¤') 

<
¤exp 

TT

2
Xex
p 

|—%L (ifby) I
P

_; (x—a,,)+(y—
a,) 

2 (8)
xcxp 2 Yx Yy `

This simple modification at the third exponential factor
describes the rotation of the distribution quite well (Fig.
6). In this frequency range, the values of the parameters
1],,, 11,,

, 
1/,,, and yy depend strongly on the frequency (Fig.

7). Note that, outside this region, the values of the pa-
rameters y are so large that the modification is not need-
ed.
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IV. CONCLUSION

We have calculated the conductivity in a N XN lattice
consisting of metal and capacitor near the percolation
threshold, and extensively studied the argument of Ram-
mal, Lemieux, and Tremblay, originally suggested only
for the metal-insulator system. After calculating more
than 104 configurations for each N and co', we present a
conjecture about the conductivity distribution, which is

just a more careful extension of the argument of Rammal,
Lemieux, and Tremblay (or a modification of the conjec-
ture of Yagil and co-workers): the distribution is a func-

.. tion of Re(2)/Re(2,,,,), Im(2)/Im(2,,,,) and the ratio
co'Eco/mo, but independent of the geometric details such
as the size N or the type of the lattice (although we have
investigated only the square lattice). The frequency (co')
dependence of the distribution was investigated through
the relative widths er; and the correction parameters y.

APPENDIX

I The log-normal distribution for a random variable x is if
given by the following equations:

1 l 1 1...21., 1,.x 1( )= 11 _J_ lIl“\JC/dl
f x I/2m aell/2)s2 exp i 2 S2

A s=ln(l¥|—t7)QHO$1·}<l. ` M

The peak position is specified by the parameter a. The
parameter s or, more conveniently, the parameter 1

1specifies the relative width of the distribution.
We summarize the statistics of the variable x on the

log-normal distribution function:
)$

- :g(1+n (1—°1),
xx a ·-"ʼia I  

JCL=—ì %/2)Sz».  
(x

((Ax)2)=a2e"2V esl-1, I

1/@7% i'   I ` 1  , .

where xR and xL are the right and the left limit of x
which has an appreciable probability.
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