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We investigate theoretically the nonequilibrium transport properties of carbon nanotube quantum dots.
Owing to the two-dimensional band structure of graphene, a double orbital degeneracy plays the role of a
pseudospin, which is entangled with the spin. Quantum fluctuations between these 4 degrees of freedom
result in an SU(4) Kondo effect at low temperatures. This exotic Kondo effect manifests as a four-peak
splitting in the nonlinear conductance when an axial magnetic field is applied.
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Introduction.—Carbon nanotubes (NTs) exhibit a good
deal of remarkable transport phenomena, including quan-
tum interference [1], Luttinger liquid features [2], or spin
polarized transport [3]. Finite-length NTs behave as quan-
tum dots (QDs) and thus show Coulomb blockade [4,5] and
Kondo physics [6]. Interestingly, the richness of the band
structure of NTs and the feasibility to attach new materials
as electrodes, e.g., ferromagnetic [3] or superconducting
contacts [7], allows us to explore new aspects of the Kondo
effect, one of the central topics in condensed matter
physics.

The electronic states of a NT form one-dimensional
electron and hole subbands. They originate from the quan-
tization of the electron wave number perpendicular to the
nanotube axis, k?, which arises when graphene is wrapped
into a cylinder to create a NT. By symmetry, for a given
subband at k? � k0 there is a second degenerate subband
at k? � �k0. Semiclassically, this orbital degeneracy cor-
responds to the clockwise (u) or counterclockwise (v)
symmetry of the wrapping modes.

In this Letter, we combine several theoretical ap-
proaches, scaling theory, numerical renormalization group
(NRG) [8], noncrossing approximation (NCA) [9], equa-
tion-of-motion (EOM) [10] methods, to present a unified
picture of low-temperature, nonequilibrium transport
through NTQDs in the presence of magnetic fields. We
show that quantum fluctuations between the four states fu "
;u #;v ";v #g may dominate transport at low temperatures
provided that both the orbital and spin indexes are con-
served during tunneling. This leads to a highly symmetric
SU(4) Kondo effect, and hence an enhanced Kondo tem-
perature, in which the spin and the orbital degrees of free-
dom are totally entangled [11]. We also point out that the
orbital degeneracy in the dot itself is not enough for having
SU(4) Kondo physics. In general, SU(2) Kondo physics is
possible. We show that neither an enhanced Kondo tem-
perature nor linear conductance measurements can distin-
guish between the two effects. Instead, the nonlinear
conductance in the presence of a parallel magnetic field
shows a four-peak structure, with different splittings for the
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spin and the orbital sectors, which unambiguously signals
SU(4) Kondo physics. Our theoretical results are in good
agreement with recent experiments by Jarillo-Herrero et al.
[12].

Model.—We study a NTQD coupled to left (L) and right
(R) electrodes. We consider the case where the NTQD has
two (nearly) degenerate localized orbitals [labeled by the
quantum number m � 1; 2, where 1 (2) denotes u (v)
orbital mode]. The presence of an axial magnetic field
(Bk) lifts both the orbital and the spin degeneracies: A
parallel magnetic field induces an Aharonov-Bohm phase
2��=�0, where � � �d2t =4Bk is the flux threading the
NT, �0 � h=e is the flux quantum, and dt the tube diame-
ter. This Aharonov-Bohm flux shifts the allowed k?, and
the orbital degeneracy is lifted by an amount 	�orb �
	edtvFBk=4, where vF if the Fermi velocity [13]. The
states near the energy gap correspond to semiclassical
orbits which have an orbital magnetic moment �orb �
edtvF=4. Thus, an axial magnetic field leads to an energy
shift �orb � �orbBk. The states further split due to the
Zeeman energy 	�Z=2 � 	g�BBk=2, where �B is the
Bohr magneton and g 
 2 is the g factor in nanotubes.�orb

scales with the NT diameter and is typically 1 order of
magnitude larger than the Bohr magneton [12,14], result-
ing in a stronger influence of Bk on the orbital sector. Thus,
the single particle energy �m� associated with the orbitalm
and the spin� is given by �m� � �d��orb��m;1 � �m;2 �
��Z=2���;" � ��;#. The NTQD is then described by the
Hamiltonian

H D �
X

m�1;2

X

��";#

�m;�d
y
m;�dm;� �

1

2
U�n� ng2; (1)

where n � 
m;�d
y
m;�dm;� is the occupation and U is the

Hubbard-like on-site interaction (we focus on the regime
where the QD is occupied by a single electron). The two
leads are modeled as

H C �
X

�2L;R

X

m�1;2

X

k;�

��;kc
y
�;k;m;�c�;k;m;�: (2)
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Without loss of generality, we assume that there are two
distinguished (groups of) channels m � 1; 2 in each lead
[15]. The coupling between the leads and the NTQD is
described by the tunneling Hamiltonian

H T �
X

�;k;�

X

m;m0

V�m;m0 �cy�;k;m;�dm0;� � H:c:; (3)

where the tunneling amplitudes read V�m;m0 � �V0�m;m0 �

VX�1� �m;m0 �=
���
2

p
(for simplicity, we ignore their k and �

dependence). In the most general case, they describe two
types of tunneling processes: (i) those in which the orbital
quantum number is conserved, denoted by V�1;1 � V�2;2 �
V0=

���
2

p
and (ii) those events accounting for mixing (cross

coupling) V�m;m0 � VX=
���
2

p
with m � m0. To gain more

physical intuition when VX � 0 we rewrite the total
Hamiltonian H � HD �H C �H T in terms of sym-
metric (even) and antisymmetric (odd) combinations of the
orbital channels. First, we simplify the algebra by perform-
ing a canonical transformation, cL�R;k;m;� � �ak;m;� 	

bk;m;�=
���
2

p
, such that the resulting Hamiltonian contains

only a single lead, ak;m;� � �cL;k;m;� � cR;k;m;�=
���
2

p
, with

two channels m � 1; 2. Next, we apply the even-odd trans-
formation ak;1�2;� � �cke� 	 icko�=

���
2

p
and d1�2� �

�de� 	 ido�=
���
2

p
, such that H reads

H �
X

�;#�e;o

�k#c
y
k#;�

ck#;� �
X

�;#�e;o

�#�d
y
#;�d#;�

�U�n� ng �
X

#�e;o

X

k#;�

V#�cyk#;�d#� � H:c:; (4)

with Ve � V0 � VX and Vo � V0 � VX (note that �k# and
�#� remain invariant under this transformation). When
VX � 0, both the even and odd orbitals are equally coupled
to the NTQD (Ve � Vo � V0). Thus, at small energies the
effective model leads to SU(4) Kondo physics; see below.
However, for the maximal mixing, i.e., VX � V0, the even
orbital is doubly coupled (Ve � 2V0), whereas the odd
orbital becomes uncoupled (Vo � 0). Here, SU(2) Kondo
physics arises owing to spin fluctuations in the even orbital
channel. Here, for simplicity, we have discussed the two
limiting cases only. In the more general case, we obtain a
crossover from SU(4) to SU(2) symmetry as the ratio
VX=V0 increases [16].

Effective Kondo model.—Let us now substantiate our
previous arguments by examining the low-energy proper-
ties of the system. After performing a Schrieffer-Wolf
transformation to H , the effective Hamiltonian reads

H K�H C�
J1
4
�S � � y� �S � � y�'z Tx�

�
J2
4
�S � � y��?  �T?�� y�?  �T?�

�
J3
4
� y'z Tx�

J4
4
�S � � y�'z 

�S � � y� Tx��J5Tx��BgB �S��orbB �T;

(5)
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where  y
k � �cyk;e;"c

y
k;e;#c

y
k;o;"c

y
k;o;#� are the field operators for

the leads in the even-odd basis and  � 
k k. The field
operator for the NTQD  y

d ��dye;"d
y
e;#d

y
o;"d

y
o;#� defines the

orbital pseudospin and the spin operators given by T �

 y
d� d and S �  y

d� d, respectively, with ' and � being
the Pauli matrices in the orbital pseudospin and spin
spaces, respectively. Here, T?�'? denotes Ty � Tz�'y �
'z. Using renormalization group (RG) arguments, the
effective coupling constants in the U-large limit are given
initially by J1 � J3 � N V2=�d, J2 � J1�jV0j

2 �
jVXj

2=V2, and J4 � J1j2V0VXj=V
2, where V2 � jV0j

2 �
jVXj

2 (N is the degeneracy). J5 is not renormalized in the
RG procedure and does not flow into the strong coupling
regime. At zero magnetic field with only spin and orbital
conserving tunneling processes (VX � 0), J1 � J2 � J3 �
J while J4 � J5 � 0. The corresponding Hamiltonian is
reduced to the SU�N � 4 Kondo model where the spin S
and the orbital pseudospin T are entangled (last term of the
equation),

H SU�4 � H C � �J=4�S � � y� 

� � y�  � T� S � � y��  � T�: (6)

The scaling equations are reduced to a single equation:

dJ=d lnD � �N +0J
2; (7)

where +0 is the density of states (DOS) in the leads and D
is the bandwidth, resulting in the exponentially enhanced
Kondo temperature TSU�4

K 
Dexp��1=�N +0J� com-
pared with TSU�2

K of the single-level SU�N � 2 model.
In the other limiting case (VX � V0), the corresponding

Kondo-like Hamiltonian [Eq. (5) at B�0 with J1�J3�
J4�2N jV0j

2=�d and J2�0] involves only spin fluctua-
tions in the doubly degenerate (N �2) even orbital. It
gives rise to what we call a two-level (TL) SU(2) model:
H TL SU�2 � H C � JSe � � 

y
e� e�1 � Tx � �J=4 �

� y
e  eTx � J5Tx. The RG equation for J is

dJ=d lnD � �2N +0J2: (8)

This model corresponds to an SU(2) Fermi liquid [17] with
a Kondo temperature TTL SU�2

K which is the same as TSU�4
K

[compare Eqs. (7) and (8); the factor 2 comes from the
doubling of the coupling 2V0 [18]].

The scaling arguments above are confirmed by the NRG
studies of the spectral density Am��! for the localized
level m�. At Bk � 0, the spectral density shows a peak
near the Fermi energy, corresponding to the formation of
the SU(4) Kondo state; see Fig. 1 (solid line in the right
inset). The peak width, which is much broader than that for
the SU(2) Kondo model (dotted line), demonstrates the
exponential enhancement of the Kondo temperature men-
tioned above. Another remarkable effect is that the SU(4)
Kondo peak shifts away from! � EF � 0 and is pinned at
! 
 TSU�4

K . This can be understood from the Friedel sum
rule [19], which, in this case, gives � � �=4 for the
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scattering phase shift at EF. Accordingly, the linear con-
ductance at zero temperature is given by G0 �
4�e2=hsin2� � 2e2=h. It is interesting to recall that the
Friedel sum rule gives the same linear conductance also for
the TL SU(2) Kondo model. Thus, neither the enhance-
ment of the Kondo temperature nor the linear conductance
can distinguish between the SU(4) and the TL SU(2)
Kondo effects. This can only be achieved by studying the
influence of a parallel magnetic field, which we do now.

SU(4) Kondo model at finite field.—Because of the
underlying SU(4) symmetry, the orbital pseudospin should
behave the same way as the real spin. In particular, the lift
of the pseudospin degeneracy will split the Kondo peak (as
long as the lift is larger than the Kondo temperature) just
like the Zeeman splitting of the real spin does. The only
difference is that the pseudospin is more susceptible to the
magnetic field than the real spin since �orb � �B (see
above). Therefore, at sufficiently large fields (2�orb �

�Z � TSU�4
K ), one has four split-Kondo peaks at ! 


	2�orb and ! 
 	�Z; see Fig. 1 (left inset). At moderate
fields such that 2�orb * TSU�4

K � TSU�2
K * �Z, one can

have a three-peak structure; see Fig. 1 (dashed line). The
lifted degeneracy in the orbital pseudospin gives two side
peaks at ! 
 	2�orb, while the spin still retains a Kondo
effect and gives the central peak. The central peak (which
is now at ! � 0) corresponds to a conventional SU(2)
Kondo effect and hence is much narrower than the central
resonance for Bk � 0.

The above features of Atot�! at equilibrium are directly
reflected in the nonlinear conductance, G � dI=dV, an
experimentally measurable quantity. The current through
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FIG. 1 (color online). NRG results for the total spectral density
Atot�!. The solid line is for the case of �orb � �Z � 0, the
dashed line for �orb � 8TSU�4

K (TSU�4
K � 0:0133�0) with �Z 


0, and the dash-dotted line for �orb � 4�Z � 8TSU�4
K .

(Parameters: �d � �10�0, U � 200�0, �0 � 0:01D, and �� �
0.) Left inset: Zoom of the four-peak splitting in Atot�!. Right
inset: Comparison of the SU(4) (solid line) and the single-level
SU(2) (dotted line) Kondo models. (Parameters: �d � �5�0,
U � 500�0, �0 � 0:02D, and �� � 0.)
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the system I can be expressed in terms of the local DOS
[20]: I � �e=@
��";#
m�1;2

R
d!�fL�! � fR�!��

��0�! � ���!�Am��!, where �0�! � �+0�!jV0j
2,

���! � �+0�!jVXj
2, and fL�R is the Fermi function

for the left (right) lead. The NRG procedure is valid only
at equilibrium, so we need a method capable to produce the
nonequilibrium DOS and the nonlinear current. We choose
to use a combination of the NCA and the EOM methods
[10]. Figures 2(a) and 2(b) display the local DOS and the
differential conductance, respectively, for several Bk. We

take �orb ranging from �orb � 0:5TSU�4
K to �orb �

1:5TSU�4
K with �orb � 10 �B leading to �Z � �orb=5.

For the lowest magnetic field, Atot�! exhibits two split-
tings, namely, the orbital and the Zeeman splittings with
peaks at ! 
 	2�orb and ! 
 	�Z, respectively, in ex-
cellent agreement with the NRG calculations. As �orb

increases, a substructure arises in the outer peaks. These
new side peaks at ! 
 	2�orb 	 �Z correspond to the
simultaneous spin-flip interorbital transitions. Increasing
further Bk these side peaks in the DOS get better resolved
[21]. All these features are also present in the differential
conductance plotted in Fig. 2(b).

Two-level SU(2) Kondo model at finite field.—As al-
ready shown, both the SU(4) and TL SU(2) Kondo models
FIG. 2 (color online). NCA � EOM results for the SU(4)
Kondo model. (a) Atot�! and (b) dI=dV versus eV for different
magnetic fields ranging from �orb � 0:5TSU�4

K (bottom curve) to
�orb � 1:5TSU�4

K (top curve). (The curves are shifted vertically
for clarity.) When Bk � 0, the Kondo resonance splits due to the
removal of both spin and orbital degeneracies. The rest of
parameters are �d � �4�0 and T � 0:003�0 with �� � 0.
The quantum dot is symmetrically coupled to two leads (�L �
�R � �0) consisting of Lorentzian bands of width 2D � 20�0.
Inset: Schematic representation of the allowed transitions.
(1) Intraorbital with spin flip. (2) Interorbital without spin flip.
(3) Interorbital with spin flip.
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FIG. 3 (color online). NRG results for the total spectral density
comparing (a) the SU(4) Kondo model (�� � 0) and (b) the two-
level SU(2) Kondo model (�� � �0). Parameters are �orb �
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PRL 95, 067204 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
lead to similar results for the Kondo temperature and the
linear conductance. Nevertheless, the inherent physics is
completely different. In the highly symmetric SU(4)
Kondo model, the orbital pseudospin and the real spin
are indistinguishable (and screened simultaneously at
zero field). On the contrary, in less symmetric multiple-
level SU(2) Kondo models, the spin should be clearly
distinguished from the orbital sector (tunneling processes
preserve only the spin). This becomes clear at finite mag-
netic fields: When Bk lifts the orbital degeneracy, only the
lower orbital level is occupied so the physics is essentially
that of a single-level Kondo model [18]. The Kondo reso-
nance peak gets narrower with increasing Bk. Since Bk also
breaks the spin degeneracy, the resulting DOS displays the
usual Zeeman splitting. Overall, there are only two peaks
around EF (Fig. 3).

Summary.—We have demonstrated that quantum fluctu-
ations between the orbital and the spin degrees of freedom
in NTQDs result in an SU(4) Kondo effect at low tempera-
tures. This exotic Kondo effect manifests as a four-peak
splitting in the nonlinear conductance when an axial mag-
netic field is applied. Similar effects may appear in other
systems, such as vertical dots [22] where the orbital quan-
tum number is preserved during tunneling. Recent trans-
port experiments in NTQDs [12] clearly support our
theoretical findings.
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