
Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 27 (2015) 255002 (6pp) doi:10.1088/0953-8984/27/25/255002

Negative tunneling magneto-resistance in
quantum wires with strong spin–orbit
coupling

Seungju Han1, Llorenç Serra2 and Mahn-Soo Choi1

1 Department of Physics, Korea University, Seoul 136-701, Korea
2 IFISC (CSIC-UIB) and Department of Physics, University of the Balearic Islands E-07122 Palma de
Mallorca, Spain

E-mail: choims@korea.ac.kr

Received 28 January 2015, revised 31 March 2015
Accepted for publication 2 April 2015
Published 28 May 2015

Abstract
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N
structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum
wire with both magnetic ordering and Rashba spin–orbit (SOC), respectively. The tunneling
magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization
direction varies relative to the quantum-wire axis, due to interplay among the
one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.
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1. Introduction

The magnetic tunneling junction (MTJ) consisting of two
ferromagnetic electrodes (FM) separated by a thin insulating
barrier (I) is a prototype structure in the rapidly developing
field of spintronics [1]. The tunneling magneto-resistance
(TMR), depending on the relative magnetic polarization of the
two ferromagnets, is a key issue not only for the spintronic
applications but also for the study of fundamental magnetic
properties [2, 3]. Due to the spin selection rule the TMR, if any,
is typically positive. Two exceptional cases have been known.
One involves magnetic impurities in the tunnel barriers and is
not surprising. The other (more important) case is associated
with the resonant tunneling and spin-dependent interfacial
phase shift in double-barrier FM/I/N/I/FM structures, where
N represents a non-magnetic normal metal [4–8].

In this work we explore another non-trivial example
of negative TMR in a two-dimensional (2D) double-barrier
MTJ of the FM/I/QW(FM+SO)/I/N structure (see figure 1(a)),
where QW(FM+SO) stands for a quantum wire (QW) with both
magnetic ordering and Rashba spin–orbit coupling (SOC). Our
MTJ structure should be distinguished from more common 1D
MTJs of the FM/I/QW/I/FM structure such as in [5], where the

QW is non-magnetic and the junction interface is perpendicular
to the quantum-wire axis. In our case, the QW itself has a
magnetic ordering and the junction interface is parallel to its
axis. Thus, transport occurs across, not along the quantum
wire. We find that the TMR exhibits strong anisotropy and even
changes sign as the polarization direction of the ferromagnets
varies relative to the quantum-wire axis. This sign-switching
anisotropic TMR is attributed to the interplay among the one-
dimensionality, the magnetic ordering, and the strong SOC
of the QW. It is interesting to recall that anisotropic TMR
was previously studied in the FM/I/FM structure where the
insulating barrier (not the ferromagnets) had SOC (see [9] and
references therein), but the TMR remained positive without
switching its sign.

Our MTJ structure is peculiar in that the nanoscale
quantum wire has both strong SOC and magnetic ordering.
One important motivation for our MTJ structure is (but is
not limited to) the recent experiment [10] on the transition
metal oxide interface between LaAlO3 (LAO) and SrTiO3

(STO) (see figure 1(b)), where the measured TMR is strongly
anisotropic and switches sign as the magnetization direction
varies in the interface plane. Since the LAO/STO interface
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Figure 1. (a) A double-barrier MTJ of the
FM/I/QW(FM+SO)/I/FM structure. (b) A setup to measure the
TMR between the ferromagnetic top electrode and the LAO/STO
interface. (c) A simplified model of (b).

was demonstrated a decade ago [11] to be metallic even
though both LAO and STO are typical band insulators, it has
attracted ever-growing interest by exhibiting superconductivity

[12], ferromagnetism [13] and even coexistence of both
effects [14, 15]. Despite a number of experimental studies
of the system, the origins of magnetic ordering and
superconductivity remain controversial [16, 17] and further
studies are imperative. The sign-switching anisotropic TMR
[10] adds a fresh intriguing question concerning the magnetic
properties of the LAO/STO interface. Our results below
suggest one possible explanation for it in terms of our MTJ
model mentioned above. Our present purpose is not modeling
of any specific device but suggesting a scenario of physical
effects.

Indeed, a recent experiment [18] suggests that the electric
conduction in the LAO/STO interface (figure 1(b)) occurs
mainly along the narrow paths associated with the twin
boundaries in the STO crystal. At the lowest approximation,
one can ignore the direct coupling between the narrow
conducting paths, which are regarded as QWs; see figure 1(c).
As the resistance occurs dominantly at the tunnel junction
between the ferromagnetic top electrode and the quantum wire,
one can ignore the resistance along the QWs and the MTJ
structures in figures 1(a) and (c) are essentially the same.

Recently, isolated quantum wires with true one-
dimensional character have also been formed artificially on the
LAO/STO interface by alternating two LAO stripes of different
thicknesses, and significantly enhanced ballistic quantum
transport along them has been demonstrated [19]. These
quantum wires naturally have both strong SOC and magnetic
ordering inherited from the LAO/STO interface. Once the
ferromagnetic top electrode is fabricated, such a device will be
an idealistic realization of our MTJ structure.

The rest of the paper is organized as follows. In section 2,
the model Hamiltonian is defined and the basis states to
compose the scattering states are specified. In section 3,
the numerically exact results of the TMR ratio are reported.
It is demonstrated that the TMR ratio exhibits a strong
anisotropy and reverses sign as the magnetic polarization
direction varies. Remarkably, this sign reversal can be tuned
with an electric gate. Sections 4 and 5 are devoted to explaining
analytically and qualitatively the sign-switching anisotropic
behavior of the TMR ratio found in section 3. First, section 4
discusses the characteristics of the single interface between the
ferromagnetic top electrode and the quantum wire. Then, the
full double-barrier structure is discussed in section 5. Finally,
section 6 concludes the paper.

2. Model

The MTJ is described by the Hamiltonian

H = p2
x + p2

z

2m
+ U(z) − α(z)

h̄
pxσy − ∆(z) · σ , (1)

where σx , σy , and σz are the Pauli matrices. We have
chosen the x-axis along the quantum-wire axis and the z-
axis perpendicular to the junction interface (figure 1(a)). The
direction of the effective field (‘Rashba field’) due to the
Rashba SOC is along the y-axis, as it arises from the structural
inversion symmetry breaking and should be perpendicular to
both x- and z-axis. The Rashba SOC is present only on the
QW (0 < z < d):

α(z) =
{
α0 (0 < z < d)

0 (otherwise)
(2)

where d ∼ 1 nm represents the diameter of the QW or the
thickness of the LAO/STO interface. The Zeeman field ∆(z)

is due to the ferromagnetism on the top electrode and the QW
and is modeled as a vector in the xy plane

∆(z) =



�1(− sin φ, cos φ, 0) (z > d) ,

�2(− sin φ, cos φ, 0) (0 < z < d) ,

0 (z < 0),

(3)

where the angle φ (0 < φ < π ) is measured from the y-axis
(Rashba field direction). We assume that �1 > 0 and that
�2 > 0 and �2 < 0 for the parallel (P) and anti-parallel
(AP) configuration of the magnetic polarization directions,
respectively. The chemical potentials (carrier densities) in
different regions are described by potential steps and the thin
insulating barriers by δ-potentials, giving the potential profile
U(z) of the form

U(z) = U1θ(z − d) + U2[�(z − d) − �(z)]

+ abUbδ(z − d) + a′
bU

′
bδ(z) . (4)

Ub is responsible for the insulating layer of LAO, ab is the
effective width of the barrier (ab ∼ 1–5 nm), U ′

b is responsible
for the junction between the QW and the normal electrode
and a′

b is its effective length scale. Experimentally, U1 and
U2 correspond to chemical potentials in the corresponding
regions. For a typical LAO/STO interface [16, 20–22], the
Fermi energy EF ∼ 40 meV, α0 ∼ h̄v0

F/8 with v0
F ≡ √

2EF/m,
�2 ∼ EF/16, and d ∼ 1 nm.

The model in equation (1) has been constructed mainly
focusing on the device of the form in figure 1(a) and hence
ignoring the motion in the y-direction. However, it is still
relevant for more realistic devices like figure 1(c). In such a
case, one has only to integrate over the transverse momentum
ky in the regions z > d and z < 0, without affecting the
qualitative features of our findings to be discussed below. The
results are also insensitive to the width of the QW in the y-
direction as long as it is small compared with the thickness in
the z-direction and the Fermi wavelength.

The momentum in the x-direction is preserved over a
tunneling process; here the junction (QW) is assumed to be
infinitely wide (long). We thus seek a wave function of the form

2
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Figure 2. (a) Numerical results of the TMR as a function of U2 and φ for d = 4.5/k0
F (k0

F ≡
√

2mEF/h̄
2), α0 = h̄v0

F/8
√

2, �1 = EF/8,
�2 = EF/16 and U1 = EF/4. (b) Cuts along φ = 0 (black dots, y polarization) and φ = π/2 (red-gray dots, x–z polarization). (c) Cuts
along φ for the indicated fixed values of U2 = −0.17EF and U2 = −0.40EF.

	(x, z) = eiqxψ(z), where ψ(z) satisfies the 1D Schrödinger
equation Hzψ(z) = (

E − h̄2q2/2m
)
ψ(z). The 1D effective

Hamiltonian Hz is given by

Hz =
[

1 0
0 1

] (
− h̄2

2m

d2

dz2
+ U1

)
− �1

[
1 0
0 −1

]
(5)

in the region z > d , by

Hz =
[

1 0
0 1

] (
− h̄2

2m

d2

dz2
+ U2

)

−
[
α0q cos φ + �2 −iα0q sin φ

iα0q sin φ −(α0q cos φ + �2)

]
(6)

in the region 0 < z < d, and by

Hz =
[

1 0
0 1

] (
− h̄2

2m

d2

dz2

)
(7)

in the region z < 0. Here the spin part of Hz has been
represented in the eigenbasis {|χ↑〉, |χ↓〉} of σy cos φ−σx sin φ

corresponding to the Zeeman field of the ferromagnetic top
electrode (region z > d). In the region z > d , the plane waves
of the form

|χ↑/↓〉eik↑/↓z , |χ↑/↓〉e−ik↑/↓z (8)

with k↑/↓ ≡
√

2m(E − U1 ± �1)/h̄
2 − q2 compose the wave

function ψ(z). In the region 0 < z < d, ψ(z) is a linear
combination of the plane waves of the form

|χ±〉eik±z , |χ±〉e−ik±z (9)

where k± ≡
√

2m(E − U2 ± �2)/h̄
2 − q2 and

|χ+〉 = cos(θ/2)|χ↑〉 + i sin(θ/2)|χ↓〉 (10a)

|χ−〉 = i sin(θ/2)|χ↑〉 + cos(θ/2)|χ↓〉. (10b)

Here the angle θ (0 < θ < π) switches between θP and θAP

upon the P (θ = θP) and AP (θ = θAP) configuration, which
are defined by

tan θP/AP = α0q sin φ

α0q cos φ ± �2
. (11)

Imposing proper matching conditions over δ-potentials at z =
0 and d, we determine (both with numerically exact method
and with analytically approximate method) the scattering
wave function ψ(z) and calculate the TMR ratio, TMR ≡
1 − RP/RAP, where RP/AP is the resistance for the P/AP
polarization.

The analytical solution of the full double-barrier problem
with proper matching conditions should be straightforward in
principle. However, in practice it leads to a lengthy expression
of the transmission even for a given direction of the incidence
momentum, and it should additionally be integrated over the
incidence angle. As it does not provide a clear physical
insight, below we discuss qualitative features of the analytical
approach, as well as the numerical exact results.

3. Exact results

Figure 2 shows the numerically exact results of the TMR
as a function of U2 and φ for a typical set of parameters
consistent with the LAO/STO interface [16, 20–22]. The
numerical method involves the integration of the transmission
probabilities over the angle of the incident wave. The
algorithm has been devised in such a way as to ensure a
sufficient precision for the angular integrals. The details of
the numerical method are described in a previous work by one
of the authors [23].

It is shown in figure 2 that the TMR can be negative, as
much as −10%. Further, it reveals two additional interesting
features: first, the TMR depends rather strongly on U2

(figure 2(b)). Experimentally, U2 corresponds to the backgate
voltage and controls the carrier density on the QW (or the
LAO/STO interface). In the recent experiment [10], on the
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other hand, the TMR did not depend much on the gate voltage.
However, the actual gate capacitance was not known and it
is not clear how large is the actual energy range covered by
the gate voltage variation. The gate voltage dependence needs
to be tested further. Moreover, in real samples (even if there
are twin boundaries) the electric conduction is not completely
confined to the narrow paths.

A second remarkable thing about figure 2 is the change of
the φ dependence from a cos(φ/2) to a − cos(φ/2) behavior by
tuning the value of U2 (figure 2(c)). This is seen as a reversed
change of sign of the TMR when going fromφ = 0 toφ = π/2;
from positive to negative for U2 = −0.4EF, and reversed for
U2 = −0.17EF.

As we discuss below, both features of the exact results
can be understood qualitatively by means of an analytical (but
approximate) method.

4. Qualitative features of single-barrier tunneling

We first examine the transmission over the first barrier at
z = d. Before going further, recall the transmission problem of
a spinless particle with energy E over a potential barrier Ub,
U(z) = U1�(−z) + U2�(z) + abUbδ(z). The transmission
amplitude t is given by

t (qb; k1, k2) =
√

k1k2

(k1 + k2)/2 + iqb

, (12)

where kj ≡
√

2m(E − Uj)/h̄
2 andqb ≡ mabUb/h̄

2.When the
barrier is sufficiently high (Ub � E), it can be approximated as

t (qb; k1, k2) ≈
√

k1k2

iqb

. (13)

Consider now a scattering state ψ±(z) of the form

ψ±(z) =



∑
s=↑,↓

(
As |χs〉e−iksz + Bs |χs〉eiksz

)
(z > d)

C±|χ±〉e−ik±z (z < d)

(14)

Here we have imposed a boundary condition such that in the
region z < d there is only one propagating spin channel |χµ〉
of fixed µ = ±. On the one hand, the coefficients As and
Cµ are related through the transmission coefficients tµs by
Cµ = ∑

s tµsAs . On the other hand, the matching conditions
over the δ-barrier are equivalent to those on the wave function
of the form

ηµs(z) =
{
Ase−iksz + Bseiksz (z > d)

Cµ〈χs |χµ〉e−ikµz (z < d)
(15)

imposed separately for each component s =↑, ↓. This
implies by equation (12) that Cµ〈χs |χµ〉 = Ast (qb; kµ, ks).
Combining these two relations leads to[

1 0
0 1

]
=

[
t+↑ t+↓
t−↑ t−↓

] [ 〈χ↑|χ+〉
t (qb;k+,k↑)

〈χ↑|χ−〉
t (qb;k−,k↑)

〈χ↓|χ+〉
t (qb;k+,k↓)

〈χ↓|χ−〉
t (qb;k−,k↓)

]

(16)

Using the approximation (13), the matrix on the right hand side
of (16) is factorized as[
t+↑ t+↓
t−↑ t−↓

]
≈ i

[√
k+/qb 0

0
√

k−/qb

]

×
[〈χ+|χ↑〉 〈χ+|χ↓〉
〈χ−|χ↑〉 〈χ−|χ↓〉

]

×
[√

k↑/qb 0
0

√
k↓/qb

]
(17)

The transmission probabilities Tµ(q) ≡ ∑
s

∣∣tµs

∣∣2
for the

channels µ = ± are given by

T±(q) ≈ k↑ + k↓
2qb

[
k±
qb

± 4m�1

h̄2(k↑ + k↓)2
cos θ

]
(18)

where the q-dependence of k↑/↓, k± and θ is implied. The
expressions (18) for the transmission probabilities between a
ferromagnet and another ferromagnet with strong Rashba SOC
is one of our main results.

5. Qualitative features of the double-barrier
structure

Now we investigate the full double-barrier structure for all
possible values of q. For high tunnel barriers, the wave
number k± in the central region (0 < z < d) is quantized
to kn ≈ nπ/d (n = 1, 2, · · ·) and the wave function takes the
form 	(x, z) = |χ±(qν

n,±)〉 sin(knz)eiqν
n,±x. For each kn and a

given energy E, the allowed values qν
n,± (ν =≶) is determined

by the dispersion relation

E = h̄2

2m

[
k2
n + (qν

±)2
]

+ U2

∓
√(

α0q
ν
n,±

)2
+ 2

(
α0q

ν
n,±

)
�2 cos φ + �2

2 . (19)

Due to narrow confinement (d ∼ 1 nm) and strong SOC
(αq � E/8), typically only one k±

n is allowed for each ±.
Hereafter we thus drop the subscript n: k ≡ kn, qν

± ≡ qν
n,±

and |χν
±〉 ≡ |χ±(qν

n,±)〉. The total transmission probability is
given by T = ∑

µ=±
[
Tµ(q>

µ ) + Tµ(q<
µ )

]
.

For φ = π/2, the Zeeman field is perpendicular to the
Rashba field and the dispersion relation is particularly simple.
Especially, one has q>

± = −q<
± ≡ q±, q+ > q−, cos θP(q±) >

0, cos θAP(q±) < 0, and T = 2
[
T+(q+) + T−(q−)

]
. When

both q± contribute to the transport (figure 3(a)),

TMR ∝ cos θP(q+) − cos θAP(q+)

k↑(q+) + k↓(q+)

−cos θP(q−) − cos θAP(q−)

k↑(q−) + k↓(q−)
(20)

The q+ (q−) channel contributes a positive (negative) TMR. As
q+ > q−, k↑(q+) + k↓(q+) < k↑(q−) + k↓(q−) and the positive
contribution from q+-channel dominates. When q+-channel is
not allowed (figure 3(b)), T−(q−) from the q− channel is the
sole contribution and the TMR becomes negative.

For φ = 0 (φ = π ), θP(q
≷
± ) = θAP(q

≷
± ) = 0 and the total

transmission reads as (equation (18) with k± = k)

T = k

q2
b

[
k↓(q>

− ) + k↑(q<
− ) + k↓(q<

+ ) + k↑(q>
+ )

]
. (21)
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Figure 3. The spin-split Fermi circles in the ferromagnetic top electrode (top) and the dispersion relation in the QW (bottom) for φ = π/2
((a) and (b)) and for φ = 0 ((c) and (d)). The thin horizontal lines indicate the Fermi levels relative to the band bottoms and the short arrows
depict the spin quantization directions. In (a) and (c) all transverse modes at the Fermi level on the QW contribute to the transport, whereas
the two outer modes in (b) and the q>

+ -mode in (d) do not.

Note that q>
+ > −q<

+ > −q<
− > q>

− > 0 in the P polarization
configuration (figures 3(c) and (d)). The TMR is then given by

TMR ∝ [k↑(q>
+ ) − k↓(q>

+ )] − [k↑(q<
+ ) − k↓(q<

+ )]

+ [k↑(q<
− ) − k↓(q<

− )] − [k↑(q>
− ) − k↓(q>

− )] (22)

where the terms have been arranged in decreasing order (all
values within square brackets are positive) and all q

≷
± have

been defined for the P polarization configuration. As U2 (the
chemical potential in the central region) varies, the q>

+ channel
may become disallowed (figure 3(d)). In such a case, there are
more negative contributions to the TMR. As U2 varies further,
the q<

+ channel is also disallowed, and the TMR becomes
positive again. As U2 varies even further, the q<

− channel stops
contributing to the transport and the TMR becomes negative
once more.

Putting all together, with U2 → −∞, TMR is positive
both at φ = 0 and φ = π/2. As U2 moves up, the q>

+ -
mode at φ = π/2 gets disallowed first at U2 ≈ −0.6EF;
the TMR(φ = π/2) becomes negative but TMR(0) remains
positive. At U2 ≈ −0.5EF, the q>

+ mode at φ = 0, π

gets disallowed and both TMR(π/2) and TMR(0) become
negative. But quite soon at U2 ≈ −0.45EF, the q<

+ mode
gets disallowed and TMR(0) quickly becomes positive again.
Therefore, until U2 ≈ −0.2EF, where both spin channels
get disallowed, TMR(π/2) and TMR(0) remain negative and
positive, respectively. As a function of φ, the TMR is expected
to behave like cos(φ/2). This is consistent with figures 2(b)
and (c) for U2 � −0.2EF.

We stress that in these qualitative arguments, evanescent
waves have been ignored completely. In particular, for U2 �
−0.2EF (with other parameters fixed as given), both spin
channels are evanescent in the central region (0 < z < d)
and cannot be addressed within the approximate analytical
method. (Even if the energy is positive, evanescent waves
appear already for negative U2 because of the strong Rashba
SOC in the centeral region.) Quite interestingly, as we have
seen above, the contributions of the evanescent waves are
highly nontrivial in this parameter range and give rise to
− cos(φ/2) behavior.

6. Conclusion

We have considered a double-barrier MTJ consisting of
a ferromagnetic electrode, a QW with magnetic ordering
and strong Rashba spin–orbit coupling, and a normal metal
electrode where the junction is formed on the cylindrical
shell of the QW. The structure may have a relevance as
a simplified model for the magnetic tunnel junction with
a LAO/STO transition metal oxide interface including twin
boundaries. The latter has been reported to exhibit sign-
switching anisotropic TMR. By means of both qualitative
analysis and numerically exact calculations, we have shown
that our model exhibits a sign-switching anisotropic TMR.
The negative TMR occurs as a combined effect of one-
dimensionality, magnetic order, and strong SOC in the QW.
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