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Quantum phase transitions in superconducting arrays under external magnetic fields
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We study the zero-temperature phase transitions of two-dimensional superconducting arrays with both the
self- and the junction capacitances in the presence of external magnetic fields. We consider two kinds of
excitations from the Mott insulating phase, charge-dipole excitations and single-charge excitations, and apply
the second-order perturbation theory to find their energies. The resulting phase boundaries are found to depend
strongly on the magnetic frustration, which measures the commensurate-incommensurate effects. Comparison
of the obtained values with those in recent experiment suggests the possibility that the superconductor-insulator
transition observed in experiment may not be of the Berezinskii-Kosterlitz-Thouless type. The system is also
transformed to a classical three-dimensioial model with the magnetic field in the time direction; this allows
the analogy to bulk superconductors, revealing the nature of the phase tran§8i@h83-18208)01645-3

I. INTRODUCTION 2D superconducting arrays, focusing on the effects of exter-
nal magnetic fields as well as the competition between self-
Two-dimensional (2D) superconducting arrays with and junction capacitances. The effects of external magnetic
charging effects have drawn much interest because of thefields on phase transitions have been studied both in the clas-
interesting phase transitionand relations to other systems sical arrays without charging enefggnd in the quantum
such as the Bose-Hubbard model and the quanX@ spin  arrays®~*? However, most existing analytical works on the
model? In those arrays where both the self-capacitage latter have employed mean-field-like approximations, which
and the junction capacitane®, are present, charging ener- are not reliable in two dimensions. We thus adopt the pertur-
gies due to both capacitances need to be considered simultgative expansion instead, and consider the SC and the CD
neously since the nature of the phase transition in generglcitations to the second order fy,. The obtained phase
depends on them. For example, at zero temperature the SY§s ndaries between the Mott insulating phase and the super-
tem with only self-capacitance can be mapped into a classignqycting one exhibit strong commensurability effects due
cal three-dimensionai3D) XY model with the ratico/E; (g the magnetic frustration. The results are compared with
of the charging energy,=e/2C, to the Josephson cou- gyneriments, suggesting the possibility that the experimen-
pling strengthE, taking the role of the temperature. In the 5|y ghserved transition may not be of the charge-unbinding
opposite limit, on the other hand, it is well known that there gyt type. It is also shown that the dual transformation maps
exists an interesting duality between charges and vortites, the system with both magnetic frustration and general ca-
and the system with only junction capacitance at zero teMaacitance onto a classical 30Y model under the magnetic
perature undergoes a charge-unbinding Berezinskigie|d in the time direction. This transformation allows us to
Kosterlitz-Thouless(BKT) trgnsmor‘f‘ from the insulating  giscuss the nature of the phase transitions by analogy with
phasez to the superconducting one as the rBYE; with ik superconductors under magnetic fields.
E,=e%/2C, is increased. The critical valueEg/E,)., be- There are four sections in this paper: Section Il is devoted
yond W_hlch the_array is superconduct_lng, has been fo_und % the perturbative approach, from which the zero-
be 0.6 '|n'exper|merﬁ,0.23 in the duality argume‘hgnd N temperature diagrams are obtained. We compare the phase
the variational methodi0.51 in perturbation expansidrand  giagrams with those obtained from the mean-field approach
0.36 in quantum Monte Carlo simulatiosAs Co is in-  and those observed in experiments. In Sec. il the system is
creased from zero in this system, the interactions betweefansformed into a classical 3RY model under the mag-
charges are screened, with the screening length givef by petic field in the(imaginary time direction. The nature of
=/C,/Cy,* and the nature of the phase transition is ex-the phase transitions is discussed by analogy with bulk su-
pected to alter. Recently, the zero-temperature phase digerconductors under magnetic fields. Finally, Sec. IV sum-

grams have been studied by means of the perturbatiomarizes the results and presents some discussions.
expansiorf which suggests that the phase transition from the

Mott insulating phase to the superconducting phase is gov-

erned by the single-charg8C) excitations or by the charge- Il PERTURBATIVE APPROACH
dipole (CD) excitations, depending on the ratl®, /C, as '
well as on the charge frustration. We begin with the Hamiltonian describing the supercon-

In this paper, we study the quantum phase transitions iucting array with magnetic frustration:
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H=4EOZj q@ﬁ;—&% cos ¢ — ¢j— Aj)=Ho+V,
y 1)
(1)

where the charge; at sitej represented in units ofefe

>0) and the phaseé, of the superconducting order param-
eter at sitek satisfy the commutation relatiofey,q;]
=10 . Whereas the summation in the second term runs over
all nearest-neighboring pairs, the charges interact via the in- i

verse of the dimensionless capacitance m:ﬁ;jxdefined by

e i S et Rl el

FIG. 1. Superconducting array of size<® with the magnetic

Cij=(1+4C1/Cy) 6 ;= (C1/Co)( & j+xT 6ij—xT bij+y frustration f=1/3. The 3<3 superlattices are indicated by thick
solid lines. The position of théth lattice site is represented Iy

+6-y (2 +a, whereR anda denote the position of the superlattice and the

) . . . ] relative position of the site inside the superlattice, respectively.
with the self-capacitanc€, and the junction capacitance

C,. The important external parameteEs=e?/C, and E; E
measure the self-charging energy and the Josephson coupling(i|V/|j)= — < i EJE co — b —Ay)) j> =_ _inj ,
energy, respectively. The magnetic bond angjle between (k1) 2

the two sitesi andj is given by the line integral of the (6)

. L _ J .
magnetic vector potentiah: A =(2m/®o) [{A-dl with 00 li) denotes the charge eigenstate with the single

the magnetic flux quantur,=hc/2e. charge at sité and the matrix elemer®;; is defined by
When E;=0, the system described by the unperturbed

Pi] E[

state with the charge configuratiagn=0 at any site. In the
opposite limit of E,=0, on the other hand, the system is
described by the 2D classicalY model, displaying super- |5 the presence of the external magnetic field, the gauge-
conductivity at zero temperature. It is thus expected thajariant magnetic frustration is defined bse ®/®,, with ®
there exists_ a critical value d#;/E, beyo_nd which the su- being the magnetic flux per plaquettef ¥ p/q with p andq
perconducting phase becomes energetically favorable. Thesing relative primes, it is obvious thRy; is invariant under
critical value may be determined by comparing the energy ofye magnetic translation af lattice sites. Noting this trans-

the Mott insulating phase with that of '_[he supercpnduc_tingationa| symmetry, we represent the position of $itey the
phase. The enerdy,, of the Mott insulating phase is easily octor R+a, whereR is the position vector of thex g

0 otherwise.

computed up to the second orderiy/Eo: superlattice unit cell containing siteanda denotes the rela-
) tive position of site inside the superlatticesee Fig. 1, and
E3N write
EM=———=—7—=—71 3

=7 =
8Eo(Coo —Ci0) P;=P(R,aR",a")=P(R-R’,3,0,a"). @)
for the LXL square arrayN=L?) (see Ref. 8 for the de-
tailed calculation It is of interest to note here th&,, does
not depend on the external magnetic field. 1

Since the lowest excitation that can lead to the change of vP(a)=—2, ePRy(R+a),
the ground state from the Mott insulating into the supercon- MR
ducting phase is presumably pointlike, we consider two
kinds of excitations: the SC and the CD excitations. We first — _
consider the SC-type excited state and write its energy up to PP(a; a’)EER: e?RP(R,a0,8"), ®
the second order i&;/Eg:

Through the Fourier transformation

©) 4 (D) L =@ the matrix is block diagonalized, resulting in the eigenvalue
Esc=EsctEsctEge. (4)  equations

In the SC-type excited state a single positive charge is lo- o o o
cated only at one site, and the zeroth-order energy is given 2 PP (ga )P (a)=\PyP(a), 9
by a’

5 5 where M=N/q? is the total number of superlattices, and
EQ=4E,>, QiCﬂqu:4EoC601- (50 v(R+a)=v; is the wave function for the eigenstate f .
] The numerical diagonalization of Hermitian matrices

Since the single charge can be located at any site without arfy” (&:@'), each of the sizex g?, yields the largest eigen-
energy difference, we need to make use of the degenera¥@lUePmax, Which in turn gives the first-order energy
perturbation theory. In the first order it is thus necessary to W

diagonalize the matrix Esc= — EPmax/ 2. (10
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FIG. 2. Three cases in which the second-order mzfmijxhas
nonzero values. Only the single-charge stafgsvith j at positions
marked by the empty circle, the filled circles, and the “x” symbols,
can be connected by two successive charge hoppings, to thé state
with i at the center Q). 0 1 1 1 1

It is well known that the largest eigenvall®g,,, always f
shows up forp=0, and further, the eigenstates correspond-

'Eg tOl;he- eigenvalueP nay are_ g-fold degenerate forf . (below each curjeand the superconducting pha&bove, com-
=p/qg.™ Since the degeneracy is not completely removed in, ;ioq from the consideration of single-charge excitations. Bound-

the first-order calculation, it is necessary to diagonalize theies for various ratios of the junction capacitai@gto the self-

FIG. 3. Phase boundaries between the Mott insulating phase

second-order matriQ) with the element given by capacitance C, are shown: C,/C,=0.0001(]), 0.1(O),
0.2(A), and 1.0(© ). Itis observed that the superconducting region
(d|V|Q><Q|V|d'> expands as the junction capacitance is increased.
Qua'= >, T 00 (11
q¢D  Ege—E
! E2 1
= J ’
where the summation runs over all the charge eigensigtes Qii= (15

32E Col_-hy_(goi_eryy
outside the spacB spanned by the SC states, g rep- otmm - (Cpi” = Ci) = (Cop —C5 o)
resents thedth eigenstate corresponding to the eigenvalugyhere the summatioB, ,, runs overmand its four nearest

Pmax: neighborsn with the restriction of nonzero denominator.
Whenj=i*x+y (denoted by “x” symbols in Fig. 2 there
|d>=2 Ud,i|i>:E vg(R+a)|R+a). (12)  exist two intervening stateg]), yielding
l e ~ E§ el (AjixxtAizxi) 4 @l (AfixytAiry)
Here the wave functiony(R+a) of thedth degenerate state Qi,j:i:i¢9=32E0 (Erl_(”:r% - ((~:’1—Efl) .
is related to the componenty(a) of the normalized eigen- X0  Tx+y0 00 x,0

vector of P via (16)

On the other hand, whep=i+2x(2y) as represented by
filled circles in Fig. 2, the matrix element is computed to be

vg(R+a)=—=v4(a), (13 _
M 6 E? el (Aji=xy) T Aixxy),i)
— ij=izax2y) = =—1 =-1. ,=_1 =-1.°
where the superscript inf~°(a) has been omitted for sim- 325, (Ci,o_czi,o)_(cool_ci,o)
plicity [see Eq.(8)]. Inserting Egs.(12) and (13) into Eq. 17

(11, we obtain Equations(15)—(17) together with the eigenvecta? ob-

tained in the first-order calculation yield the explicit form of
Qua=2 > ?é(a)v_d’(a,)éRJraa’ (14)  the matrix elemenQqq in Eg. (14). The matrixQ is then
R aa ’ diagonalized to give the minimum eigenval@g,,, which
with in turn leads to the energy of the SC state:
Esc=EQ+EX+E2=4EoC ot~ EPrmax/2+ Qumin-
(IVIa)alVI) _~ e e T (19
ESt—EY ! Comparing it with the energy of the Mott phase in E8),
_ we find the phase boundary between the Mott insulating
It is obvious thatQ;; does not vanish only whefi) and|j) phase and the superconducting phase. Figure 3 shows the
are related by two successive charge hoppings as shown obtained phase boundaries separating the superconducting
Fig. 2. Wheni = (denoted by an empty circle in Fig),4tis  phase(above each curyeand the insulating onéelow) on
easy to find that the plane ofE;/Ey andf, for various values ofC,/Cy. In

QRJra,a’E Z
qe¢D
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obtaining the critical valuesH;/Eg) . numerically, we have
considered systems of sufficiently large sizes, so that the

critical values display convergence in at least three signifi- 9 T
cant digits, for given parametefandC,/Cy. Thus the sys-
tem size has been increased up\te 384, depending on the (@) (b)
values off andC;/C,, and the convergence has been con-
firmed. i

It is obvious that the superconducting region expands as Lo || )
the junction capacitanc€; is increased, confirming the re- I I &
sults in Refs. 7 and 8. In particular, the obtained phase dia- © )
grams are entirely similar to those obtained @¢>C; in
the mean-field approximatiord, demonstrating significant [
commensurate-incommensurate effects due to the magnetic L e -
frustration. Quantitatively, however, there exists discrepancy s o
between the results of the perturbation expansion and those I Lo
from the mean-field approaches: The estimated critical val- (e) ()

ues in the former are rather larger. Furthermore, the pertur-
bation expansion yields the ratio of the critical value for
=1/2 to that for f=0 approximately given by 1.9 for <
C,/Cy=0.1 (see Fig. % this is larger than the valug2
predicted in the self-charging limit within the mean-field
approximation::*2The increase of; /C, is found to reduce @ (h)
the ratio monotonically. It is of interest to notice here that the
first-order calculation reproduces the mean-field vai(®e
regardless oz, /C,. i
We now consider the CD-type excited state, where there .
exists a pair of positive and negative charges separated by ()
the lattice spacing. The energy of the CD state is written as
FIG. 4. The charge-dipole-type statgsl) giving nonzero ele-
ments of the second-order matixj|M|k,|) in case thati,j) has
the charge configuration of a positive charge atiséed a negative
charge aj as shown in(@). The filled and the empty circles denote
the positive and the negative charges, respectivélyshows an

example of the states not included (&—(h).
up to the second order iB;/Ey. The zeroth- and the first-

; ; 0)_ ~-1_~-1
order energies are easily calculat€df)=8Eq(Cog —C;0)  there is only one intervening state in the case of Fig),4
and ES3=0. To calculate the second-order term, we applyleading to
the second-order degenerate perturbation theory, and diago-
nalize the matrixM, the element of which is given by

O

Eco=ECB+Ecp+ESD (19

E3 %A
. (iLilVla)alVIk,I) (LMD = 358 = =1 (22)
<|1J|M|k1|>Eq§D EE‘%_ E(o) ' (20) 0 C00 _CQ,O
q

Here|k,l) is the CD states with the positive charge at &ite For |k,I) given by the state in Figs.(é) and 4d), we find
and the negative charge at sitewherel is one of the four
nearest neighbors &, and the sum is performed over the

intervening statef) outside the spacB spanned by all CD 2 [ i(ALi+ALD  gilA ] +A] D)
states. The above matrix element does not vanish only when (i,j|M[i,I=i,)= ==t =1
i ; 32E0{C 1_gol Bl LB
|k,I) can be connected tfi,j) by two successive charge 00~ ~x0 “x+y,0 “x0
hoppings. Figure 4 shows all possible stategkof) when A A
li,j) is given as in Fig. @). While the matrix element cor- n € a e
i i is i ~-1 =-1 =~
responding to Fig. @) is given by 3C;('0—2C;(+§,’0—C001
i IMIiLj e Ay
(LiMIig) TS S —
, 3C)A(‘O_C;(+§/’0_2COO
E2 o, 1
32E() (Eﬁl—élzil)—(6,}1—6@1)—(6501—6;3)' wherei, denotes thexth nearest neighboring site ofa

(22 =1,2,3,4). Similarly, we get
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0.6
Ey/E,

0.55 |-

0.5

(below each curveand the superconducting pha&bove of the
charge-dipole type excitation. The upper curve is f§/C,
=10 000 while the lower one is fa€,/Cy=10.

M E§ "ei(Aj'i-%—Ak’j) el (A i+Ai )
(LiIMIK= [y =2 == t= T =1
32EO{COO _Ci,o C§<+9,0_C§<,o
el (Ai *A i)
_l’_
~—1 =1 ~_1
3C§<,0_2C§<+§/,0_C00
ol (A A
+—= = = (24
-1 =1 )
3C§<,0_C§<+§/,0_2C00
for Figs. 4e) and 4f),
il % ’rei(Aj,i*'Ak,l) ) 2i(AkitA )
1) )= =1 =-1'"=-1 ~_1
3%0| Tt - Cs 5 Cr3.0~ Co
el (A HA; D)
+— — — (25
1 -1 ~=_
2C; 5.0~3C50~Coo
for Figs. 4g) and 4h), and finally
E2 [ elAji+A)
(LMK D = ==
32E, Cool_C;,o
el (Ajit AL

e N S N |
(Ci "= Ci)—(C; = Cy;)—(Cqg _C;(, )
(26)

for the cases corresponding to Figi)4Equationg21)—(26)
give the NX4N matrix M, which, again via the Fourier
transformation, reduces tagdx 4q2 Hermitian matrices for
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FIG. 5. Phase boundaries between the Mott insulating phase FIG. 6. Phase boundaries in the plane Bf/E; and f for

C,/Cy=100 between the Mott insulating phadeelow the curve

and the superconducting pha@bove computed from the consid-
eration of single-charge excitations. The obtained critical values
(E;/Eq)~0.657 forf=0 and 0.915 forf =1/2 are in good agree-
ment with the experimental results.

taining Fig. 3, we have considered systems of such large
sizes that at least three significant digits of the critical values
(E4/E4). are obtained for given values 6&andC,/C,.

In experiment on the arrays with,; /Cy~ 100, the critical
values €,/E;)~0.6 forf=0 and 0.9 forf =1/2 have been
observed this is to be compared with the corresponding
values obtained in the perturbation scheme here, with the CD
excitations taken into consideratiori {/E,).~0.503 for f
=0 and 0.508 forf =1/2. Remarkably, the consideration of
CD excitations yields the critical value fdr=1/2 not far
larger than that forf =0, in disagreement with the experi-
mental result. On the other hand, the phase boundary com-
puted from the consideration of the SC excitations for
C,/Cy=100, shown in Fig. 6, is in general consistent with
that measured in experimeh€ontrary to the usual anticipa-
tion that CD excitations play a crucial role in destroying the
Mott insulating phase fo€,>C,, this apparently suggests
that the superconductor-insulator transition observed in ex-
periment is driven by SC excitations rather than by CD ones,
raising the interesting possibility that the transition may not
be of the BKT type.

Ill. DUAL TRANSFORMATION APPROACH

In this section, we examine the nature of the phase tran-
sitions discussed above in terms of the topological excita-
tions. This is achieved by means of the mapping of the quan-
tum phase model given by Edl) into an effective 3D

f=p/q. By diagonalizing numerically the resulting matrices, classical model; this approach was already adopted by other

we obtain the second-order energ), the comparison of

authors in the absence of the external magnetic fiaie

which with the energy of the Mott insulating phase given bybegin with the Euclidean action, corresponding to the Hamil-
Eq. (3) yields the phase boundaries. Figure 5 displays théonian in Eqg.(1), in the imaginary-time path-integral repre-

obtained boundaries in the plane Bf/E; andf. As in ob-

sentation:
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. 1 3 E;/Ey
S:+IE qj,TVT¢j,T+ RE qi,TCij 1qj,7
NG 1,7
—K > co§V,¢;,—2mA,], (27) S
Lt 3D XY

where K=Ey8Ey, A, j=Ajjiu, V. (k=XYy) andV,

are difference operators in the space and time directions, ‘
respectively, and thémaginary time-slice spacingd~ has melting
been chosen to be/8EEy/%.1* In the nearest-neighbor
charging limit (Co=0), the coupling constant and the time-
slice spacing in Eq(27) are given byK=Ey8E,; and 7 Ey/E,
= /8E,E /%, respectively. Standard procedure® then

lead to the dual form of Eq27), which is simply the effec-

tive Hamiltonian for the 3D classical system of vortex loops:

S s
BKT
Hy==aK 2 > [v,(f,7)=38,f] .
ij, 7,7 HEXYT ST I
Xoﬂ(ri_rj17_7,)[Uﬂ(rj!7-’)_5ﬂ,Tf]' (28 melting
Here the vortex interaction OM(I‘,T)EZW[UM(O,O) (b) f

—U,(r,7)] is determined by the Fourier transforms
FIG. 7. Schematic diagram of the phase bounda@gdor C,

~ ~ C(q) #0 and(b) for Co=0. The dashed lines are valid only for con-
Ux(g,@)=Uy(q,w)= = , tinuum systems.
A(ay) +A(agy) +C(a)A(w)

@9 U (r,7)~e I"lInr. Thus the equivalent classical system de-
~ 1 scribed by Eq(28) forms a layered structure of planar spins
U.(qw)= = (30)  with strongly anisotropic coupling constants. The 3D aniso-

A(gy) +A(gy) +C(q)A(w) tropic XY model has also been studied extensively as a spe-

. _ _ ; cial case of the Lawrence-Doniach model for high-
Wlth A(q)—2(1. Cf)sq)'. The Fourier transform of the ca- temperature superconductdfs® The effectively low
pacitance matrix is given byC(q)=1+(C1/Co)[A(q)  dimensionality enhances the phase fluctuations and lowers
+A(qy)] for Co#0 andC(q)=A(q,) +A(qy) for Co=0. the transition poin ;(f).1” Furthermore, at zero field, the
Note also that the vortex lines can terminate nowhere bustrong anisotropy drives the transition to be of the BKT
form closed loops or go to infinity, as implied by the condi- type**°
tion V-v(r,7)=0. These arguments have been summarized in Fig. 7. Note
The behavior of the interactioﬁﬂ(r,r) in Eq. (28) de- that the important effects of frustration arising from the com-
pends crucially on whetheZ, vanishes, since the Coulomb Mensurability between the flux lattice and the underlying lat-
interaction between chargé8ooper pairsis infinitely long tice are disregarded here. Such continuum approximation is
ranged forCy=0. If C,#0, one can show, in the same man- Pelieved to be qualitatively valid in low-field regiofiepre-
ner as in Ref. 16, that at large scale§ f+ 72>1) the in-  Sented by the solid lines in Fig).7As the field is increased,

LA . . . frustration effects are expected to come into play and to yield
teractionU , is isotropic and displays the asymptotic behav- o o .
L H - sensitive dependence of the transition on the field, reproduc-
ior U, (r,7)~ = 1/yr°+ 7 apart from an additive constant, jnq the perturbative results shown in Figs. 3 and 5.
regardless of the rati€,/C,. Accordingly, the system is

described by the 3D isotropiXY model under an external
magnetic field in ther direction, the topological representa- IV. CONCLUSION

tion of which is given by Eq(28). The 3D XY model has We have studied the zero-temperature phase transitions of
been widely used as a model for the bulk superconductor &yo-dimensional superconducting arrays with both self- and
temperatures low enough to neglect the amplitude fluctugnction capacitances in the presence of external magnetic
tions of the order paramet&f.By analogy with the vortex fields. Through the use of the second-order perturbation
lattice melting transition at the temperatufg,(H) in the  theory, we have considered both single-charge excitations
mixed state of a type-Il superconductor, a first-order phasgnd charge-dipole excitations, from which the phase dia-
transition is expected & (f) in our system under the mag- grams are obtained. It has been found that the phase bound-
netic field, aK is increased from zertf:*® At zero field, in  aries are quite sensitive to the variation of the magnetic frus-
particular, the phase transition should be continuous, belongration due to the commensurate-incommensurate effects. In
ing to the 3DXY universality class. particular, the superconductor-insulator transition observed
For Co=0, on the other hand, the interaction is highly in experiment has been suggested to be driven by single-
anisotropic: Ux(r,r)=Uy(r,r)~exp(—\/r2+ ) while  charge excitations rather than by charge-dipole ones, and
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thus the possibility that the transition may not be of thebeen discussed, based on the analogy with the bulk super-
Berezinskii-Kosterlitz-Thouless type has been pointed out. Irtonductor under magnetic fields. Unfortunately, unlike in the
this regard, it is noteworthy that the lowest excitation has2D XY model, there have been few studies of the frustration
already been shown to be comprised by the single-charggffects in the 3DXY model, which disallows quantitative
type rather than the charge-dipole type even for large valuegomparison at this stage. Nevertheless, the analogy with the
of C1/Co, so long as there exists finite charge frustrafion. continuum superconductor provides a complement to the

In experiment, it is practically impossible to set the chargeperturbative estimate of the phase boundaries, already giving
frustration exactly zero, and accordingly, the lowest excita clue to the nature of the phase transitions.

tion should presumably be of the single-charge type even in
the nearest-neighbor charging limit. Indeed it has recently
been pointed out that the absence of the Berezinskii-
Kosterlitz-Thouless ~ charge-unbinding  transition  in
experiment$ may be attributed to the presence of the finite  This work was supported in part by the Basic Science
charge frustration which is randomly distributed over theResearch Institute Program, Ministry of Education, in part by
arrays° the Korea Science and Engineering Foundation through the

We have also transformed the system to a 3D classics8RC Program. M.S.C. was also supported in part by the
XY model under magnetic fields in the time direction. TheMinistry of Science and Technology through the Creative
nature of the phase transitions at low magnetic fields haResearch Initiative Program.
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