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Quantum phase transitions in superconducting arrays under external magnetic fields

Beom Jun Kim* and Gun Sang Jeon
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

M.-S. Choi†

Department of Physics and Pohang Superconductivity Center, Pohang University of Science and Technology, Pohang 790-784

M. Y. Choi
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 27 May 1998!

We study the zero-temperature phase transitions of two-dimensional superconducting arrays with both the
self- and the junction capacitances in the presence of external magnetic fields. We consider two kinds of
excitations from the Mott insulating phase, charge-dipole excitations and single-charge excitations, and apply
the second-order perturbation theory to find their energies. The resulting phase boundaries are found to depend
strongly on the magnetic frustration, which measures the commensurate-incommensurate effects. Comparison
of the obtained values with those in recent experiment suggests the possibility that the superconductor-insulator
transition observed in experiment may not be of the Berezinskii-Kosterlitz-Thouless type. The system is also
transformed to a classical three-dimensionalXY model with the magnetic field in the time direction; this allows
the analogy to bulk superconductors, revealing the nature of the phase transitions.@S0163-1829~98!01645-2#
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I. INTRODUCTION

Two-dimensional ~2D! superconducting arrays wit
charging effects have drawn much interest because of t
interesting phase transitions1 and relations to other system
such as the Bose-Hubbard model and the quantumXXZ spin
model.2 In those arrays where both the self-capacitanceC0
and the junction capacitanceC1 are present, charging ene
gies due to both capacitances need to be considered sim
neously since the nature of the phase transition in gen
depends on them. For example, at zero temperature the
tem with only self-capacitance can be mapped into a cla
cal three-dimensional~3D! XY model with the ratioE0 /EJ
of the charging energyE0[e2/2C0 to the Josephson cou
pling strengthEJ taking the role of the temperature. In th
opposite limit, on the other hand, it is well known that the
exists an interesting duality between charges and vortice3,4

and the system with only junction capacitance at zero te
perature undergoes a charge-unbinding Berezins
Kosterlitz-Thouless~BKT! transition5 from the insulating
phase to the superconducting one as the ratioEJ/E1 with
E1[e2/2C1 is increased. The critical value (EJ/E1)c , be-
yond which the array is superconducting, has been foun
be 0.6 in experiment,6 0.23 in the duality argument4 and in
the variational method,7 0.51 in perturbation expansion,8 and
0.36 in quantum Monte Carlo simulations.9 As C0 is in-
creased from zero in this system, the interactions betw
charges are screened, with the screening length given bL
[AC1 /C0,4 and the nature of the phase transition is e
pected to alter. Recently, the zero-temperature phase
grams have been studied by means of the perturba
expansion,8 which suggests that the phase transition from
Mott insulating phase to the superconducting phase is g
erned by the single-charge~SC! excitations or by the charge
dipole ~CD! excitations, depending on the ratioC1 /C0 as
well as on the charge frustration.

In this paper, we study the quantum phase transition
PRB 580163-1829/98/58~21!/14524~7!/$15.00
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2D superconducting arrays, focusing on the effects of ex
nal magnetic fields as well as the competition between s
and junction capacitances. The effects of external magn
fields on phase transitions have been studied both in the c
sical arrays without charging energy1 and in the quantum
arrays.9–12 However, most existing analytical works on th
latter have employed mean-field-like approximations, wh
are not reliable in two dimensions. We thus adopt the per
bative expansion instead, and consider the SC and the
excitations to the second order inEJ. The obtained phase
boundaries between the Mott insulating phase and the su
conducting one exhibit strong commensurability effects d
to the magnetic frustration. The results are compared w
experiments, suggesting the possibility that the experim
tally observed transition may not be of the charge-unbind
BKT type. It is also shown that the dual transformation ma
the system with both magnetic frustration and general
pacitance onto a classical 3DXY model under the magneti
field in the time direction. This transformation allows us
discuss the nature of the phase transitions by analogy
bulk superconductors under magnetic fields.

There are four sections in this paper: Section II is devo
to the perturbative approach, from which the zer
temperature diagrams are obtained. We compare the p
diagrams with those obtained from the mean-field appro
and those observed in experiments. In Sec. III the system
transformed into a classical 3DXY model under the mag
netic field in the~imaginary! time direction. The nature o
the phase transitions is discussed by analogy with bulk
perconductors under magnetic fields. Finally, Sec. IV su
marizes the results and presents some discussions.

II. PERTURBATIVE APPROACH

We begin with the Hamiltonian describing the superco
ducting array with magnetic frustration:
14 524 ©1998 The American Physical Society
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H54E0(
i , j

qi C̃i j
21qj2EJ(

^ i , j &
cos~f i2f j2Ai j ![H01V,

~1!

where the chargeqj at site j represented in units of 2e(e
.0) and the phasefk of the superconducting order param
eter at sitek satisfy the commutation relation@fk ,qj #
5 id jk . Whereas the summation in the second term runs o
all nearest-neighboring pairs, the charges interact via the

verse of the dimensionless capacitance matrixC̃i j defined by

C̃i j [~114C1 /C0!d i , j2~C1 /C0!~d i , j 1 x̂1d i , j 2 x̂1d i , j 1 ŷ

1d i , j 2 ŷ! ~2!

with the self-capacitanceC0 and the junction capacitanc
C1 . The important external parametersE0[e2/C0 and EJ
measure the self-charging energy and the Josephson cou
energy, respectively. The magnetic bond angleAi j between
the two sitesi and j is given by the line integral of the
magnetic vector potentialA: Ai j [(2p/F0)* i

jA•dl with
the magnetic flux quantumF0[hc/2e.

When EJ50, the system described by the unperturb
HamiltonianH0 has the Mott insulating phase as the grou
state with the charge configurationqi50 at any site. In the
opposite limit of E050, on the other hand, the system
described by the 2D classicalXY model, displaying super
conductivity at zero temperature. It is thus expected t
there exists a critical value ofEJ/E0 beyond which the su-
perconducting phase becomes energetically favorable.
critical value may be determined by comparing the energy
the Mott insulating phase with that of the superconduct
phase. The energyEM of the Mott insulating phase is easil
computed up to the second order inEJ/E0 :

EM52
EJ

2N

8E0~C̃00
212C̃x̂,0

21
!

~3!

for the L3L square array (N[L2) ~see Ref. 8 for the de
tailed calculation!. It is of interest to note here thatEM does
not depend on the external magnetic field.

Since the lowest excitation that can lead to the chang
the ground state from the Mott insulating into the superc
ducting phase is presumably pointlike, we consider t
kinds of excitations: the SC and the CD excitations. We fi
consider the SC-type excited state and write its energy u
the second order inEJ/E0 :

ESC5ESC
~0!1ESC

~1!1ESC
~2! . ~4!

In the SC-type excited state a single positive charge is
cated only at one site, and the zeroth-order energy is g
by

ESC
~0!54E0(

i , j
qi C̃i j

21qj54E0C̃00
21 . ~5!

Since the single charge can be located at any site without
energy difference, we need to make use of the degene
perturbation theory. In the first order it is thus necessary
diagonalize the matrix
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^ i uVu j &52K iUEJ(
^k,l &

cos~fk2f l2Akl!U j L [2
EJ

2
Pi j ,

~6!

where u i & denotes the charge eigenstate with the sin
charge at sitei and the matrix elementPi j is defined by

Pi j [H exp~2 iAi j ! for nearest-neighboring sitesi and j ,

0 otherwise.

In the presence of the external magnetic field, the gau
invariant magnetic frustration is defined byf [F/F0 with F
being the magnetic flux per plaquette. Iff 5p/q with p andq
being relative primes, it is obvious thatPi j is invariant under
the magnetic translation ofq lattice sites. Noting this trans
lational symmetry, we represent the position of sitei by the
vector R1a, where R is the position vector of theq3q
superlattice unit cell containing sitei anda denotes the rela-
tive position of sitei inside the superlattice~see Fig. 1!, and
write

Pi j 5P~R,a;R8,a8!5P~R2R8,a;0,a8!. ~7!

Through the Fourier transformation

v̄ ~p!~a![
1

AM
(
R

eip•Rv~R1a!,

P̄~p!~a;a8![(
R

eip•RP~R,a;0,a8!, ~8!

the matrix is block diagonalized, resulting in the eigenva
equations

(
a8

P̄~p!~a;a8!v̄ ~p!~a8!5l~p!v̄ ~p!~a!, ~9!

where M[N/q2 is the total number of superlattices, an
v(R1a)[v i is the wave function for the eigenstate ofPi j .
The numerical diagonalization ofM Hermitian matrices
P̄(p)(a;a8), each of the sizeq23q2, yields the largest eigen
valuePmax, which in turn gives the first-order energy

ESC
~1!52EJPmax/2. ~10!

FIG. 1. Superconducting array of size 936 with the magnetic
frustration f 51/3. The 333 superlattices are indicated by thic
solid lines. The position of thei th lattice site is represented byR
1a, whereR anda denote the position of the superlattice and t
relative position of the site inside the superlattice, respectively.
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It is well known that the largest eigenvaluePmax always
shows up forp50, and further, the eigenstates correspo
ing to the eigenvaluePmax are q-fold degenerate forf
5p/q.13 Since the degeneracy is not completely removed
the first-order calculation, it is necessary to diagonalize
second-order matrixQ with the element given by

Qdd85 (
q¹D

^duVuq&^quVud8&

ESC
~0!2Eq

~0!
, ~11!

where the summation runs over all the charge eigenstateuq&
outside the spaceD spanned by the SC states, andud& rep-
resents thedth eigenstate corresponding to the eigenva
Pmax:

ud&5(
i

vd,i u i &5(
R,a

vd~R1a!uR1a&. ~12!

Here the wave functionvd(R1a) of thedth degenerate stat
is related to the componentv̄d(a) of the normalized eigen
vector of P̄ via

vd~R1a!5
1

AM
v̄d~a!, ~13!

where the superscript inv̄d
p50(a) has been omitted for sim

plicity @see Eq.~8!#. Inserting Eqs.~12! and ~13! into Eq.
~11!, we obtain

Qdd85(
R

(
a,a8

v̄d* ~a!v̄d8~a8!Q̃R1a,a8 ~14!

with

Q̃R1a,a8[ (
q¹D

^ i uVuq&^quVu j &

ESC
~0!2Eq

~0!
[Q̃i j .

It is obvious thatQ̃i j does not vanish only whenu i & and u j &
are related by two successive charge hoppings as show
Fig. 2. Wheni 5 j ~denoted by an empty circle in Fig. 2!, it is
easy to find that

FIG. 2. Three cases in which the second-order matrixQ̃i j has
nonzero values. Only the single-charge statesu j & with j at positions
marked by the empty circle, the filled circles, and the ‘‘x’’ symbo
can be connected by two successive charge hoppings, to the stau i &
with i at the center (s).
-

n
e

e

in

Q̃ii 5
EJ

2

32E0
(

~m,n!

8
1

~C̃ni
212C̃mi

21!2~C̃00
212C̃x̂,0

21
!
, ~15!

where the summation( (m,n)8 runs overm and its four neares
neighborsn with the restriction of nonzero denominato
When j 5 i 6 x̂6 ŷ ~denoted by ‘‘x’’ symbols in Fig. 2!, there
exist two intervening statesuq&, yielding

Q̃i , j 5 i 6 x̂6 ŷ5
EJ

2

32E0

ei ~Aj ,i 6 x̂1Ai 6 x̂,i !1ei ~Aj ,i 6 ŷ1Ai 6 ŷ,i !

~C̃x̂,0
21

2C̃x̂1 ŷ,0
21

!2~C̃00
212C̃x̂,0

21
!

.

~16!

On the other hand, whenj 5 i 62x̂(2ŷ) as represented by
filled circles in Fig. 2, the matrix element is computed to

Q̃i , j 5 i 62x̂~2ŷ!5
EJ

2

32E0

ei ~Aj ,i 6 x̂~ ŷ!1Ai 6 x̂~ ŷ!,i !

~C̃x̂,0
21

2C̃2x̂,0
21

!2~C̃00
212C̃x̂,0

21
!
.

~17!

Equations~15!–~17! together with the eigenvectorv̄ ob-
tained in the first-order calculation yield the explicit form
the matrix elementQdd8 in Eq. ~14!. The matrixQ is then
diagonalized to give the minimum eigenvalueQmin , which
in turn leads to the energy of the SC state:

ESC5ESC
~0!1ESC

~1!1ESC
~2!54E0C̃00

212EJPmax/21Qmin .
~18!

Comparing it with the energy of the Mott phase in Eq.~3!,
we find the phase boundary between the Mott insulat
phase and the superconducting phase. Figure 3 shows
obtained phase boundaries separating the supercondu
phase~above each curve! and the insulating one~below! on
the plane ofEJ/E0 and f, for various values ofC1 /C0 . In

FIG. 3. Phase boundaries between the Mott insulating ph
~below each curve! and the superconducting phase~above!, com-
puted from the consideration of single-charge excitations. Bou
aries for various ratios of the junction capacitanceC1 to the self-
capacitance C0 are shown: C1 /C050.0001(h), 0.1(s),
0.2(n), and 1.0(L). It is observed that the superconducting regi
expands as the junction capacitance is increased.
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obtaining the critical values (EJ/E0)c numerically, we have
considered systems of sufficiently large sizes, so that
critical values display convergence in at least three sign
cant digits, for given parametersf andC1 /C0 . Thus the sys-
tem size has been increased up toN5384, depending on the
values off andC1 /C0 , and the convergence has been co
firmed.

It is obvious that the superconducting region expands
the junction capacitanceC1 is increased, confirming the re
sults in Refs. 7 and 8. In particular, the obtained phase
grams are entirely similar to those obtained forC0@C1 in
the mean-field approximation,12 demonstrating significan
commensurate-incommensurate effects due to the mag
frustration. Quantitatively, however, there exists discrepa
between the results of the perturbation expansion and th
from the mean-field approaches: The estimated critical
ues in the former are rather larger. Furthermore, the per
bation expansion yields the ratio of the critical value forf
51/2 to that for f 50 approximately given by 1.9 fo
C1 /C0&0.1 ~see Fig. 3!; this is larger than the valueA2
predicted in the self-charging limit within the mean-fie
approximation.11,12The increase ofC1 /C0 is found to reduce
the ratio monotonically. It is of interest to notice here that t
first-order calculation reproduces the mean-field valueA2
regardless ofC1 /C0 .

We now consider the CD-type excited state, where th
exists a pair of positive and negative charges separate
the lattice spacing. The energy of the CD state is written

ECD5ECD
~0!1ECD

~1!1ECD
~2! ~19!

up to the second order inEJ/E0 . The zeroth- and the first

order energies are easily calculated:ECD
(0)58E0(C̃00

212C̃x̂,0
21)

and ECD
(1)50. To calculate the second-order term, we ap

the second-order degenerate perturbation theory, and di
nalize the matrixM, the element of which is given by

^ i , j uM uk,l &[ (
q¹D

^ i , j uVuq&^quVuk,l &

ECD
~0!2Eq

~0!
. ~20!

Here uk,l & is the CD states with the positive charge at sitek
and the negative charge at sitel, wherel is one of the four
nearest neighbors ofk, and the sum is performed over th
intervening statesuq& outside the spaceD spanned by all CD
states. The above matrix element does not vanish only w
uk,l & can be connected tou i , j & by two successive charg
hoppings. Figure 4 shows all possible states ofuk,l & when
u i , j & is given as in Fig. 4~a!. While the matrix element cor
responding to Fig. 4~a! is given by

^ i , j uM u i , j &

5
EJ

2

32E0
(
~k,l !

8
1

~C̃li
212C̃ki

21!2~C̃l j
212C̃k j

21!2~C̃00
212C̃x̂,0

21
!
,

~21!
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there is only one intervening state in the case of Fig. 4~b!,
leading to

^ i , j uM u j ,i &5
EJ

2

32E0

e2iA j i

C̃00
212C̃x̂,0

21 . ~22!

For uk,l & given by the state in Figs. 4~c! and 4~d!, we find

^ i , j uM u i ,l 5 i a&5
EJ

2

32E0
F ei ~Aj ,i1Ai ,l !

C̃00
212C̃x̂,0

21 1
ei ~Aj , j a

1Aj a ,l !

C̃x̂1 ŷ,0
21

2C̃x̂,0
21

1
ei ~Aj a ,l1Aj , j a

!

3C̃x̂,0
21

22C̃x̂1 ŷ,0
21

2C̃00
21

1
ei ~Ai ,l1Aj ,i !

3C̃x̂,0
21

2C̃x̂1 ŷ,0
21

22C̃00
21G , ~23!

where i a denotes theath nearest neighboring site ofi (a
51,2,3,4). Similarly, we get

FIG. 4. The charge-dipole-type statesuk,l & giving nonzero ele-
ments of the second-order matrix^ i , j uM uk,l & in case thatu i , j & has
the charge configuration of a positive charge at sitei and a negative
charge atj as shown in~a!. The filled and the empty circles denot
the positive and the negative charges, respectively.~i! shows an
example of the states not included in~a!–~h!.
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^ i , j uM uk5 j a , j &5
EJ

2

32E0
F ei ~Aj ,i1Ak, j !

C̃00
212C̃x̂,0

21 1
ei ~Ai a ,i1Ak,i a

!

C̃x̂1 ŷ,0
21

2C̃x̂,0
21

1
ei ~Ak,i a

1Ai a ,i !

3C̃x̂,0
21

22C̃x̂1 ŷ,0
21

2C̃00
21

1
ei ~Ak, j 1Aj ,i !

3C̃x̂,0
21

2C̃x̂1 ŷ,0
21

22C̃00
21G ~24!

for Figs. 4~e! and 4~f!,

^ i , j uM uk,l &5
EJ

2

32E0
F ei ~Aj ,i1Ak,l !

C̃00
212C̃x̂,0

21 1
e2i ~Ak,i1Aj ,l !

C̃x̂1 ŷ,0
21

2C̃x̂,0
21

1
ei ~Ak,l1Aj ,i !

2C̃x̂1 ŷ,0
21

23C̃x̂,0
21

2C̃00
21G ~25!

for Figs. 4~g! and 4~h!, and finally

^ i , j uM uk,l &5
EJ

2

32E0
F ei ~Aj ,i1Ak,l !

C̃00
212C̃x̂,0

21

1
ei ~Aj ,i1Ak,l !

~C̃li
212C̃ki

21!2~C̃l j
212C̃k j

21!2~C̃00
212C̃x̂,0

21
!
G

~26!

for the cases corresponding to Fig. 4~i!. Equations~21!–~26!
give the 4N34N matrix M, which, again via the Fourie
transformation, reduces to 4q234q2 Hermitian matrices for
f 5p/q. By diagonalizing numerically the resulting matrice
we obtain the second-order energyECD

(2) , the comparison of
which with the energy of the Mott insulating phase given
Eq. ~3! yields the phase boundaries. Figure 5 displays
obtained boundaries in the plane ofEJ/E1 and f. As in ob-

FIG. 5. Phase boundaries between the Mott insulating ph
~below each curve! and the superconducting phase~above! of the
charge-dipole type excitation. The upper curve is forC1 /C0

510 000 while the lower one is forC1 /C0510.
e

taining Fig. 3, we have considered systems of such la
sizes that at least three significant digits of the critical valu
(EJ/E1)c are obtained for given values off andC1 /C0 .

In experiment on the arrays withC1 /C0'100, the critical
values (EJ/E1)c'0.6 for f 50 and 0.9 forf 51/2 have been
observed;6 this is to be compared with the correspondi
values obtained in the perturbation scheme here, with the
excitations taken into consideration: (EJ/E1)c'0.503 for f
50 and 0.508 forf 51/2. Remarkably, the consideration o
CD excitations yields the critical value forf 51/2 not far
larger than that forf 50, in disagreement with the exper
mental result. On the other hand, the phase boundary c
puted from the consideration of the SC excitations
C1 /C05100, shown in Fig. 6, is in general consistent wi
that measured in experiment.6 Contrary to the usual anticipa
tion that CD excitations play a crucial role in destroying t
Mott insulating phase forC1@C0 , this apparently suggest
that the superconductor-insulator transition observed in
periment is driven by SC excitations rather than by CD on
raising the interesting possibility that the transition may n
be of the BKT type.

III. DUAL TRANSFORMATION APPROACH

In this section, we examine the nature of the phase tr
sitions discussed above in terms of the topological exc
tions. This is achieved by means of the mapping of the qu
tum phase model given by Eq.~1! into an effective 3D
classical model; this approach was already adopted by o
authors in the absence of the external magnetic field.4 We
begin with the Euclidean action, corresponding to the Ham
tonian in Eq.~1!, in the imaginary-time path-integral repre
sentation:

se FIG. 6. Phase boundaries in the plane ofEJ/E1 and f for
C1 /C05100 between the Mott insulating phase~below the curve!
and the superconducting phase~above! computed from the consid
eration of single-charge excitations. The obtained critical val
(EJ/E1)c'0.657 for f 50 and 0.915 forf 51/2 are in good agree
ment with the experimental results.
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S51 i(
j ,t

qj ,t¹tf j ,t1
1

2K(
i j ,t

qi ,tCi j
21qj ,t

2K (
j ,m,t

cos@¹mf j ,t22pAm; j #, ~27!

where K[AEJ/8E0, Am; j[Aj , j 1m̂ , ¹m (m5x,y) and ¹t
are difference operators in the space and time directio
respectively, and the~imaginary! time-slice spacingdt has
been chosen to beA8EJE0/\.14 In the nearest-neighbo
charging limit (C050), the coupling constant and the tim
slice spacing in Eq.~27! are given byK[AEJ/8E1 and dt
5A8EJE1/\, respectively. Standard procedures15,16 then
lead to the dual form of Eq.~27!, which is simply the effec-
tive Hamiltonian for the 3D classical system of vortex loop

HV52pK (
i , j ,t,t8

(
m5x,y,t

@vm~r i ,t!2dm,t f #

3Ûm~r i2r j ,t2t8!@vm~r j ,t8!2dm,t f #. ~28!

Here the vortex interaction Ûm(r ,t)[2p@Um(0,0)
2Um(r ,t)# is determined by the Fourier transforms

Ũx~q,v!5Ũy~q,v!5
C̃~q!

D~qx!1D~qy!1C̃~q!D~v!
,

~29!

Ũt~q,v!5
1

D~qx!1D~qy!1C̃~q!D~v!
~30!

with D(q)[2(12cosq). The Fourier transform of the ca

pacitance matrix is given byC̃(q)511(C1 /C0)@D(qx)

1D(qy)# for C0Þ0 and C̃(q)5D(qx)1D(qy) for C050.
Note also that the vortex lines can terminate nowhere
form closed loops or go to infinity, as implied by the cond
tion ¹•v(r ,t)50.

The behavior of the interactionÛm(r ,t) in Eq. ~28! de-
pends crucially on whetherC0 vanishes, since the Coulom
interaction between charges~Cooper pairs! is infinitely long
ranged forC050. If C0Þ0, one can show, in the same ma
ner as in Ref. 16, that at large scales (Ar 21t2@1) the in-
teractionÛm is isotropic and displays the asymptotic beha
ior Ûm(r ,t);21/Ar 21t2 apart from an additive constan
regardless of the ratioC1 /C0 . Accordingly, the system is
described by the 3D isotropicXY model under an externa
magnetic field in thet direction, the topological representa
tion of which is given by Eq.~28!. The 3DXY model has
been widely used as a model for the bulk superconducto
temperatures low enough to neglect the amplitude fluc
tions of the order parameter.17 By analogy with the vortex
lattice melting transition at the temperatureTm(H) in the
mixed state of a type-II superconductor, a first-order ph
transition is expected atKc( f ) in our system under the mag
netic field, asK is increased from zero.17,18 At zero field, in
particular, the phase transition should be continuous, belo
ing to the 3DXY universality class.4

For C050, on the other hand, the interaction is high
anisotropic: Ûx(r ,t)5Ûy(r ,t);exp(2Ar 21t2) while
s,

:

ut

-

at
a-

e

g-

Ût(r ,t);e2utuln r. Thus the equivalent classical system d
scribed by Eq.~28! forms a layered structure of planar spin
with strongly anisotropic coupling constants. The 3D anis
tropic XY model has also been studied extensively as a s
cial case of the Lawrence-Doniach model for hig
temperature superconductors:17,19 The effectively low
dimensionality enhances the phase fluctuations and low
the transition pointKc( f ).17 Furthermore, at zero field, th
strong anisotropy drives the transition to be of the BK
type.4,19

These arguments have been summarized in Fig. 7. N
that the important effects of frustration arising from the co
mensurability between the flux lattice and the underlying l
tice are disregarded here. Such continuum approximatio
believed to be qualitatively valid in low-field regions~repre-
sented by the solid lines in Fig. 7!. As the field is increased
frustration effects are expected to come into play and to y
sensitive dependence of the transition on the field, reprod
ing the perturbative results shown in Figs. 3 and 5.

IV. CONCLUSION

We have studied the zero-temperature phase transition
two-dimensional superconducting arrays with both self- a
junction capacitances in the presence of external magn
fields. Through the use of the second-order perturba
theory, we have considered both single-charge excitati
and charge-dipole excitations, from which the phase d
grams are obtained. It has been found that the phase bo
aries are quite sensitive to the variation of the magnetic fr
tration due to the commensurate-incommensurate effects
particular, the superconductor-insulator transition obser
in experiment has been suggested to be driven by sin
charge excitations rather than by charge-dipole ones,

FIG. 7. Schematic diagram of the phase boundaries~a! for C0

Þ0 and ~b! for C050. The dashed lines are valid only for con
tinuum systems.
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thus the possibility that the transition may not be of t
Berezinskii-Kosterlitz-Thouless type has been pointed out
this regard, it is noteworthy that the lowest excitation h
already been shown to be comprised by the single-cha
type rather than the charge-dipole type even for large va
of C1 /C0 , so long as there exists finite charge frustratio8

In experiment, it is practically impossible to set the char
frustration exactly zero, and accordingly, the lowest exc
tion should presumably be of the single-charge type eve
the nearest-neighbor charging limit. Indeed it has rece
been pointed out that the absence of the Berezins
Kosterlitz-Thouless charge-unbinding transition
experiments6 may be attributed to the presence of the fin
charge frustration which is randomly distributed over t
arrays.20

We have also transformed the system to a 3D class
XY model under magnetic fields in the time direction. T
nature of the phase transitions at low magnetic fields
io

o

i

s

s

e
s

n
s
ge
es

e
-
in
ly
ii-

al

s

been discussed, based on the analogy with the bulk su
conductor under magnetic fields. Unfortunately, unlike in t
2D XY model, there have been few studies of the frustrat
effects in the 3DXY model, which disallows quantitative
comparison at this stage. Nevertheless, the analogy with
continuum superconductor provides a complement to
perturbative estimate of the phase boundaries, already gi
a clue to the nature of the phase transitions.
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