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We have developed an exact method to calculate the vortex-antivortex interaction energy in the
anisotropic three-dimensional (3D) XY model. For this calculation, dual transformation, which is
already known for the 2D XY model, was extended. We found an explicit form of this interaction
energy as a function of the anisotropic ratio and the separation r between the vortex and antivortex
located on the same layer. The form of the interaction energy is Inr at the small r limit but
is proportional to r at the opposite limit. This form of interaction energy is consistent with the
upper-bound calculation using the variational method by Cataudella and Minnhagen.

I. INTRODUCTION

In studying the phase fluctuation effects of high-
temperature layered superconductors, several approx-
imations’™® of the vortex-antivortex interaction energy
have been suggested at the level of the highly aniso-
tropic three-dimensional (3D) XY model (from now on
called the layered XY model) or the Lawrence-Doniach
model.5® For the bare interaction energy, Cataudella
and Minnhagen! adopted the variational method and
found the upper bound of this energy. According to
their calculation, this interaction energy increases lin-
early with the separation between the vortex and the
antivortex, which is different from the logarithmically in-
creasing energy of the 2D XY model. This is not surpris-
ing since this energy at larger separations should be dom-
inated by the Josephson vortex lines connecting the vor-
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FIG. 1. Vortex-antivortex pair. In a three-dimensional lat-
tice, a vortex line is either infinitely long or a closed loop. For
a highly anisotropic three-dimensional 3D XY model, how-
ever, the above configuration is the most important. This
configuration, including the Josephson string, is called a vor-
tex-antivortex pair (Refs. 3 and 4).
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tex and antivortex (see Fig. 1).

In passing, we must clarify what we mean by a vortex-
antivortex pair on the same layer (Fig. 1). For the layered
XY model or Lawrence-Doniach model, the vortex line
cannot be disconnected, and should either be infinitely
long or a closed loop. Thus a vortex and antivortex
pair on a layer should be connected by Josephson vor-
tex lines (Josephson strings) residing between the lay-
ers. Recent experimental results on high-temperature
superconductors® !® were, however, explained through
the interpretation that the phase fluctuations are asso-
ciated with the layers and that major roles in phase fluc-
tuation effects are played only by the vortex and antivor-
tex on the layer. Hence the vortex-antivortex interaction
energy is reasonably defined®* as the smallest energy of
the very vortex loop configuration, which corresponds to
the shortest Josephson strings. The Josephson strings
just modify the interaction energy of the pair at large
separations. Monte Carlo simulations®™® performed to
understand the phenomenon of vortex fluctuation at fi-
nite temperature also support this.

In the present paper we develop a dual transforma-
tion of the highly anisotropic 3D XY model and obtain
an explicit form of the vortex-antivortex interaction en-
ergy as a function of the anisotropic ratio and r. The
dual transformation of 2D XY model which was devel-
oped by José et al.'® was extended for anisotropic 3D
XY model. This result is compared with that of the
variational calculation by Cataudella and Minnhagen.!

We also discuss the result in connection with the high-T..
superconductors. This is under the assumption that the
Lawrence-Doniach model is reduced to the layered XY
model. The reduction is possible if the amplitude fluc-
tuation is strongly suppressed and the energy associated
with the induced magnetic field is neglected.*

II. DUAL TRANSFORMATION
We begin with the partition function
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where K| = K is the intralayer coupling constant and

K, = €K (e < 1) is the interlayer coupling constant.
In an approximate connection to the Lawrence-Doniach

model,
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where 1) is the Ginzburg-Landau order parameter, and §|
is the szburg—Landau in-plane coherence length. The

m (M) is the effective mass parallel (perpendicular) to
the plane. After expanding each exponential factor in
Fourier series
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where I, are modified Bessel functions, and after inte-
grating out 8; ; , we can rewrite Z and S as
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FIG. 2. Dual lattice of cubic lattice. The auxiliary field £
is defined at each of the face centers in the cubic lattice. The
constraint of Eq. (6) to the field m is automatically satisfied
for any value of the field £.
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where the primed sum denotes the constraint

mo(i+1,4j|n) — ma(i,i—1|j|n) + my(i|i+1, 5|n)
—my(i|j, j—1|n)

+m;(i|j|n+1,n) — m,(i|j|ln,n—1) =0 (6)

for all ¢, j, and n.

The constraint for the summation over m can be solved
by moving to the dual lattice of the original cubic lattice
(see Fig. 2) and by deﬁmng another integer field £ on the
dual lattice sites

Mo (i, i+1]|n) = L (i+ 17+ 3 |n) — £ (i+ 57— 3In) — &, (i+L|jin+3) + 4, (i +]jln—1),
my (il j+1In) = Lo (ilj+3In+3) — £e(ili+3In—3) — L(i+3|i+3n) + L(—3li+3In),
mz(i|j|n,n+1)=é’y(i+%]j|n+%)—f (z——lj{n+ =) — Em(i|j+%|n+%)+f,,(i|j—%|'n+%).

In terms of the field on the dual lattice, Z is written in
a matrix form

z«{;ﬂjm [—%(flMW], (1)

where the bra and ket notation is defined below:

(£1M|ey=3 % > > tu(igim

wy il §j' nn!

M, (|57 |nn")

x4, (7,3, 7).

{(For explicit form of M, see Appendix A.) Using the
Poisson resummation rule

[
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it follows that
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where the quantity Q,(p = z,y, or z) is interpreted to
be the vorticity in the direction of i axes.'®

Since the element of the matrix M depends only on
the differences between the site indices, it is convenient
to calculate Z in the momentum space where the matrix
M is diagonal. Then we treat only the 3 x 3 matrix

M(p.,py,p.)
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~5(p) = —55 (£6) | M(2) | £(p) ) + 276 { Q(p) | £(3) ).
(10)

Now we diagonalize the matrix M(p) (Appendix A)
with three eigenvectors | v ), | vy ), and [v2 ) and three
eigenvalues wo(= 0), wy, and wy. We integrate over
{vo| £), (v1]| £), and (w2 | £), instead of | £). Then
the zero eigenvalue gives a constraint to the vortex con-
|
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figuration (Q(p) | vo)} =0 or

Qu(ilj+3In+3) — Qu(i—1lj+5In+3) + Qy(i+3liln+3)

~Qu(i+3i-1ln+3)

+Q.(i+3li+3In) — Qz(i+3li+3In-1) =0, (11)
i.e., the vortex line is either infinitely long or a closed
loop. After Gaussian integration over (v, | £) and

{vg | £), we finally obtain the partition function for vor-
tices '

7 % exp |- [ ()50 (12)
vivith

~5(0) = —3@n VK (Q) | (= 1) x|+ - ) (al) 1Q)) (13

where the primed sum reminds us of the constraint
Eq. (11).

III. RESULT

The dual transformation discussed above provides
an explicit form of interaction energy of the vortex-
antivortex pair on a layer (Fig. 1). Just for convenience
(noting that we are interested in the large separation
limit), we assume that the vortex and antivortex is placed
parallel to the y axes (@, = 0). Let the separation be-
tween the vortex and the antivortex be 2r. In this case,
the configuration vector { Q(p) | is given by

1___e+1'27‘1’y — —1
=L (0l - e 1)L (1)

(Q(p) |

If we substitute this vector into (13), we obtain the in-
teraction energy in units of 4w K as

w/2 s 2
U(2r) = tan"(e)(2r) + %f d(ps_l.ll-...(_grﬁ)_
0

Fe (Sin <P)7
sin® ¢

(15)

where

! 1
Fe(a)=/0 dt(ﬁ

v1—1t#2 (16)
VaZ+l—82a?+e2+1—¢2 )

To simplify the integral form of the interaction energy of
Eq. (15), we used the formula

sin(2r¢)/sin¢g =2 i cos[(2s—1)¢}. 1n

s=1

Note that in the case of € = 0, Eq. (15) is reduced into
the interaction for the 2D XY model, while even a small
value of ¢ induces the term linear in 7.

The asymptotic expansion for » > 1 (Appendix B)
gives

U(2r) ~ tan™'(€)(2r) + pc + O(1/r) (ptc = const).
(18)

Cataudella and Minnhagen, in their variational calcu-
lation, took a simple approximation, where the phases
on the layers next to the layer containing the vortex-
antivortex pair are identically zero, and found an upper
bound. Their result is expected to be larger than the val-
ues of our exact calculation. In our notations, the inter-
action energy of Cataudella and Minnhagen is as follows
(in units of 4w K):

V2

This, compared with ours, U(2r) =~ [e+ O(e)](2r) +
const, is larger roughly by a factor w/v/2.

For small values of », a simple asymptotic form is not
available. But numerical evaluation shows logarithmic
increase with 2r of the interaction energy [Fig. 3(b)].
Plots of U(2r) for 2r < 150 and ¢ = 0,0.01,0.02,0.03
which include the intermediate case are shown in Fig. 3.
It clearly shows crossover from logarithmic behavior for
small r to linear one for large r. If the anisotropic ra-
tio € increases, the region of logarithmic dependence de-
creases. For the details, we draw a plot of U vs log;4(2r)
at Fig. 3(b).

The modification of the bare vortex-antivortex inter-
action, in consequence, leads to the correction to the
two-dimensional Berezinskii-Kosterlitz-Thouless {(BKT)
transition.l” 2° Hikami and Tsuneto?! studied this ef-
fect by the renormalization group (RG) analysis. In
their study, they assumed that the two-dimensional RG

Uyar(2r) =~ —=€{2r) + const.
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FIG. 3. Numerical evaluation of the interaction energy.
Part (a) shows linear dependence on 2r for r 3> 1. At part
(b), the crossover from logarithmic behavior for small r to
linear behavior for large r is clear. For a comparison, the
decoupled case (¢ = 0) is also plotted with filled circles.

equation®® is valid, but subject to the cutoff 1/¢ because
the vortex-antivortex interaction energy is logarithmic
only at distances smaller than 1/¢ (in units of the lat-
tice constant).?? According to their result, for example,
the true transition temperature T, is shifted from the
two-dimensional transition point TgxT due to the small
interlayer coupling by an amount of order (r/|Ine})?.
This result has also been confirmed by the Monte Carlo
simulations.?
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-IV. CONCLUSION

We developed a duval transformation of the highly
anisotropic 3D XY model to study the bare vortex-
antivortex interaction. We found that this dual trans-
formation method provides an exact form of vortex-
antivortex interaction energy as a function of the
anisotropic ratio and the separation between the vortex-
antivortex pair. This form of this interaction is in good
agreement with a zero-temperature variational calcula-
tion by Cataudella and Minnhagen. The correction to

- the two-dimensional BKT transition due to the small in-
terlayer coupling was also briefly discussed.
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APPENDIX A

In this Appendix, we summarize the information about
the matrix M in Eq. (8) and Eq. (10) First we deﬁne
some short-hand notations for convenience:

V(pu) = 1 — exp(—ip,), |
A(py) = 2(1 — cosp,), p==z,y, or z,
A(pz; py) = A=) + Apy),
A(Pmapy,l’z) = A(p=) + A(py) + A(p2),
Ae(Pzs Pys Pz) = A(pz) + Alpy) + EZA( 2)-

The Fourier transform of M, (3¢[jj'|nn’) is defined as

M., (i'|j5'|nn') = / (dp) et(i=i)pe gHi(i=3")py

X e+i(n""”',)Pz M,

/.W(Pa:apy’ pz)- (A]-)

And the momentum space 3 X 3 matrix M (ps,py,P-)
looks like

M= 6_2M1 + Mz, (A2)
Alpy) —V(p:)V*(py) 0
My=| —V*(p)V(py) A(pe) o1,
0 0 0
Apz) 0 —V(pz)V*(pz)
M, = 0 2A(p,) —V(py)V*(p2)
~V*@:)V(pz) —V*(0y)V(pz)  APespy)
We need eigenvalues and eigenvectors of M (p). Below the eigensystem follows:
wp =0, w1 = A(pmapyspz)a wa = f_er(pa:,pyapz)s (A3)
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Vipz) V(ps)V*(p:) +V*(py)
lvo > x V(Py) » I'Ul ) & V(py)V* (Pz) 3 ‘ U2 ) o< _V*(pa:) ) (A4)
V(p:) ~A(pz,py) 0
[
where |vo ), | v1 ), and | vz} are to be normalized. F.(a) < 4a®|lna|, (A > 0). (B1)

APPENDIX B

In this Appendix, we prove the asymptotic behavior in
Eq. (18) of U(2r) for the limit r 3> 1. At first, we show
that the function F,(a) in Eq. (16) vanishes with o« — 0
as .

|

V1—12

And then, we show that for U(2r), the correction to the
linear behavior in r is at most O(1/7).

Resorting to the mean value theorem in the interval
[0, a], there exists 0 < ¢ < « such that

Fu(a) = F.(0) + a;ch(c).

Then the inequality follows:

1
F. (o) =ac/o‘ dt [(c2+1——t2)3/2 +

vV1—1t2
(c2+ €% +1—t2)3/2

t 1
< dt
_QCL c2+1—t2+

1
c2+e2+1—t2)

1 Vit +1
< ac In O0<e<
(2\/1+c2 \/1+c2—1)( cra<)
.2 1 Vita?+1
- 2V1+a? JVi+a?-1
~a?|lnql.

Now we decompose G(a) = F.(a)/a? into diverging
part Gaiv(@) and smooth part Gemen (o). Then the above
argument shows that the divergence of Ggjv(a) as o —+ 0
is at most logarithmic. In consequence, the integration

w1

" dp sin? Insi Zn2
/(; w sin®(2ry) | mn(pl_z n2- 2o

leads to the simple asymptotic form

I

n/2
/ dy sin®(2rp)Gaiv(sin ) = const + O(1/7)(r > 1).
0

(B2)
Finally noting that

n/2
: / dp sin®(2re)Gemn(sin @) = const + O(1/r)(r > 1)
0

(B3)
completes the proof.
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