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Abstract. – We consider arrays of Josephson junctions as well as single junctions in both the
classical and quantum-mechanical regimes, and examine the generalized (frequency-dependent)
resistance, which describes the dynamic responses of such Josephson-junction systems to ex-
ternal currents. It is shown that the generalized resistance and the power spectrum of voltage
fluctuations are related via the fluctuation-dissipation theorem. Implications of the obtained
relations are also discussed in various experimental situations.

There has been much interest in the dynamics of Josephson junctions [1] and Josephson-
junction arrays [2], e.g., current-voltage characteristics, dynamic resistivity, and voltage fluc-
tuations. Among these, the voltage fluctuations provide direct information about the dynamic
correlations in equilibrium [3, 4], whereas the resistivity probes the response to external cur-
rents [5]. The latter is also closely related to the relaxation function, which describes the relax-
ation behavior towards the equilibrium state. These two probes are therefore complementary to
each other, and one may expect, in view of the general idea of the fluctuation-dissipation (FD)
theorem, that there exists a FD relation between them. Nevertheless most existing studies have
been devoted either to the resistivity or to the voltage fluctuations, and the relation between
the two has hardly been investigated. Here we thus make use of the linear-response theory to
derive the generalized frequency-dependent resistance, and examine the relation between the
generalized resistance and the power spectrum of the voltage fluctuations in Josephson-junction
systems.

There are three energy scales in a Josephson-junction system: the Josephson coupling
energy EJ ≡ h̄IJ/2|e|, the self-charging energy E0 ≡ e2/2C0, and the junction-charging energy
EC ≡ e2/2C, where IJ is the Josephson critical current and C0 and C are the self-capacitance
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and the junction capacitance, respectively. In case that the Josephson energy dominates
(E0, EC � EJ), the system at finite temperatures can be described by classical Langevin-type
equations of motion for the phases of the order parameter on superconducting grains. For a
single junction, in particular, the equation of motion reads

φ̈+ γφ̇+ sinφ = I + ζ(t), (1)

where φ is the phase difference between the two grains, the time has been rescaled in units of the
inverse of the Josephson plasma frequency ωp ≡ h̄

−1√8ECEJ, I is the external direct-current
bias in units of IJ, and the damping parameter γ is related to the shunt resistance R via
γ ≡ h̄ωp/2|e|RIJ. The noise current ζ(t) (in units of IJ) is characterized by zero mean and
correlation 〈 ζ(t)ζ(t′) 〉 = 2γTδ(t− t′), where T is the temperature in units of EJ.

We introduce the probability distribution function P (φ, v, t) and write the Fokker-Planck
(FP) equation [6], which corresponds to the Langevin equation (1):

∂

∂t
P (φ, v, t) = LFP(φ, v)P (φ, v, t), (2)

where v ≡ φ̇ is the voltage (in units of h̄ωp/2|e|) across the junction, and the FP operator LFP

is defined to be

LFP(φ, v) ≡

[
−
∂

∂φ
v +

∂

∂v

(
γv + sinφ− I + γT

∂

∂v

)]
. (3)

Suppose that the system is disturbed by a time-dependent external current δI(t) (in units
of IJ), which gives the additional term −δI(t)(∂/∂v) in the FP operator. The resulting change
in the average value of v takes the form

δ〈v(t)〉 =

∫ ∞
−∞

dt′ G(t− t′) δI(t′), (4)

where the linear-response function G(t) is given by [6]

G(t) = −θ(t)

∫ 2π

0

dφ

∫ ∞
−∞

dv v exp[tLFP]
∂

∂v
Peq(φ, v) (5)

with the equilibrium probability distribution Peq(φ, v). Note that G(t) describes the voltage
response of the system to the external current and can be expressed in terms of the correlation
function

G(t) = θ(t)T−1 〈 v(t)[v(0) − α(φ(0), v(0))] 〉 ≡ θ(t)T−1C̃v(t), (6)

where

α(φ, v) ≡
1

Peq(φ, v)

(
v + T

∂

∂v

)
Peq(φ, v). (7)

In the frequency space, eq. (6) takes the simple form

2T Reχ(ω) = Sv(ω), (8)

where the generalized resistance χ(ω) and the voltage power spectrum Sv(ω) are defined
to be the Fourier transforms of G(t) and C̃v(t), respectively. Note also that it is the real
part of χ(ω) (rather than the imaginary part) which characterizes the dissipation across the
junction. Equation (8) thus comprises the FD relation in the resistively and capacitively



m.-s. choi et al.: current responses and voltage fluctuations etc. 441

shunted junction (RCSJ) system, connecting the generalized resistance (i.e. dissipation) with
the voltage correlation function describing equilibrium fluctuations.

The above relation is to be compared with the standard FD theorem [7], which is applicable
to a Hamiltonian system. Namely, when one can explicitly write Peq = Z−1e−Heff/T with a
temperature-independent effective Hamiltonian Heff , α(φ, v) in eq. (7) simply reduces to a
constant, giving the standard FD relation. In the RCSJ system, however, the periodicity
in φ [8] urges the system to have a non-zero probability current even in the stationary state.
As a result, the stationary state cannot be described by an effective Hamiltonian, and in
general α(φ, v) becomes a dynamical variable depending on φ and v. Similar features have
been pointed out in the system without the φ̈ term [9], where the FD relation between the
correlation and response of φ (rather than φ̇) has been considered. Equation (8), in contrast,
concerns the voltage v ≡ φ̇, which is a physical quantity. Here it is easy to show that the
eigenfunction expansion of Peq [6] leads to the identity

∫
dv (∂/∂v)Peq(φ, v) = 0, which implies

that the (equilibrium) average of α(φ, v) is just the average voltage: 〈 α(φ, v) 〉 = 〈v〉 ≡ v̄.
It then follows that at long time scales the correlation function in eq. (6) reduces to the
standard voltage correlation function: C̃v(t) ≈ Cv(t) ≡ 〈 [v(t)−v̄][v(0)−v̄] 〉, which recovers
the standard FD theorem with the voltage power spectrum Sv(ω) =

∫∞
−∞ dt eiωtCv(t).

On the other hand, in systems with the charging energy dominant over the Josephson
coupling energy, quantum fluctuation effects should be taken into account, especially at very
low temperatures. Such a macroscopic quantum system can be conveniently described by the
quantum phase model:

H0 = 4EC(n+ q)2 −EJ cosφ, (9)

where the number n of excess Cooper pairs and the phase difference φ are quantum-mechani-
cally conjugate variables ([n, φ] = i ), and q is the external gate charge in units of 2e. For
simplicity, we assume that dissipation due to, e.g., quasiparticle tunneling is negligible in this
low-temperature regime, and consider the system without the bias current, where q does not
change with time. A disturbing current δI(t) applied to the system leads to the perturbation

Hamiltonian H1 = 8EC(n+q) δq(t), where δq(t) ≡ −K
∫ t

dt′ δI(t′) with K ≡
√
EJ/8EC. The

standard quantum theory of linear response then gives the induced voltage across the system
in the form

δ〈v(ω)〉 = χq(ω) δq(ω) = χ(ω) δI(ω), (10)

where χ(ω) ≡ (iK/ω)χq(ω) and χq(ω) is the Fourier transform of the retarded Green’s function
GR(t− t′) ≡ iθ(t− t′) 〈 [v(t), v(t′)] 〉 . The corresponding FD theorem reads

(1− e−ω/KT )Sv(ω) = 2 Imχq(ω) = 2(ω/K) Reχ(ω), (11)

where the power spectrum Sv(ω) is again given by the Fourier transform of the voltage
correlation function Cv(t), and ω should be understood as limε→0+(ω + iε). It is pleasing
that in the classical limit (ω/T → 0), eq. (11) reproduces the classical relation eq. (8). Here
without the bias current, we have v̄ = 0 and Cv(t) = 〈 v(t)v(0) 〉. In the presence of the bias
current, n0 increases with time and the unperturbed Hamiltonian H0 depends explicitly on
time, which in general does not allow the standard derivation. Nevertheless when the bias
current is sufficiently small, it may be incorporated into the disturbing current; this leads to
the same FD relation as that shown in eq. (11).

We now investigate the physical implications of the relations in eqs. (8) and (11) to several
cases. First, we consider the case that the external bias current is smaller than the Josephson
critical current (I < 1). In view of eq. (8), of particular interest in this case are the
underdamped (γ � 1) classical junctions at low temperatures. At zero temperature the phase
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of the (unperturbed) junction stays at one of the local minima φ = sin−1I (mod 2π) of the
wash-board potential U(φ) = − cosφ − Iφ. Small perturbations then induce the well-known
plasma oscillation in the vicinity of the local minimum, with the oscillation frequency ωP given
by (1 − I2)1/4 at T = γ = 0. At finite but sufficiently low temperatures (T � 1), the noise
current stirs up the small fluctuations around the local minimum, and the power spectrum of
the voltage is known to become Sv(ω) = 2γTω2[(ω2 − ω2

P)2 + γ2ω2]−1 [1]. The FD relation
in eq. (8) then gives

Reχ(ω) =
γω2

(ω2 − ω2
P)2 + γ2ω2

, (12)

which reveals that at low temperatures the generalized resistance is temperature-independent.
Note also the behavior Reχ(ω) → 0 as ω → 0, which is nothing but the manifestation of
the superconducting channel. A system with strong quantum fluctuations displays another
interesting phenomenon, the Bloch oscillation [10], at sufficiently low temperature. In this
case, eq. (11) indicates that like the voltage spectrum, the generalized resistance should also
exhibit resonance peaks at the Bloch oscillation frequencies proportional to the bias current.

We next consider the Josephson oscillation in an overdamped (γ � 1) Josephson junction
with a large bias current (I > 1) [11], for which the Fokker-Planck equation (2) reduces to [6]

γ
∂

∂t
P (φ, t) =

∂

∂φ

(
sinφ− I + T

∂

∂φ

)
P (φ, t). (13)

At zero temperature, the voltage v(t) across such a resistively shunted junction (RSJ) displays
the Josephson oscillation with the frequency ωJ = γ−1

√
I2 − 1, which leads to the dc voltage

v̄ = ωJ. As the temperature is increased from zero, the dc voltage also grows, approaching the
Ohmic characteristics. At the same time, thermal fluctuations introduce decaying behavior
of the probability in addition to the oscillatory behavior. The eigenfunction expansion of the
transition probability [6] at large time scales shows that the leading contribution comes from
the lowest eigenvalue, giving

P (φ, t|φ0, 0) ∼ e−γJ|t| cos(ωJt) + higher harmonics, (14)

where the line width γJ of the Josephson oscillation is related to the dc voltage v̄(I, T ) via
γJ = πγ(dv̄/dI)2T [1]. While at T = 0, we obviously have γJ = 0 and ωJ = γ−1

√
I2 − 1, at

finite temperatures, they may be estimated numerically to give γJ ≈ v̄ = ωJ at T ≈ 1 (see also
sect. 11.3 of ref. [6]). Equation (14) leads to the power spectrum

Sv(ω) ∼
γJ

γ2
J + (ω − ωJ)2

+
γJ

γ2
J + (ω + ωJ)2

+ higher harmonics, (15)

which shows correlation peaks at ω = ±ωJ; this is followed by resonances of the resistance
via eq. (8). It is also of interest to note the crossover behavior to the high-temperature
(noise-dominant) regime at T ≈ 1, where the correlation peak in Sv(ω) disappears.

Heretofore we have concentrated on single-junction systems, but the generalization to an
array system is straightforward. The classical equation of motion (1) is easily generalized to
any array of Josephson junctions, e.g., a two-dimensional (2D) square N ×N array:∑

j

Cijφ̈j + γ
∑
j

∆ij φ̇j +
∑
j

′
sin(φi − φj) = Ii +

∑
j

′
ζij(t) (16)

with the noise current characterized by 〈 ζij(t)ζkl(0) 〉 = 2γTδ(t)(δikδjl − δilδjk), where ∆ij is
the lattice Laplacian, Cij ≡ (C0/C)δij + ∆ij is the dimensionless capacitance matrix, and the
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prime restricts the summation over the nearest neighbors of site i. Ii is the current fed into
site i = (x, y), given by Ii = I(δx,0 − δx,N); this corresponds to that along one edge of the
array (x = 0); the uniform current I is injected into each site, while along the opposite edge
(x = N) the same current is extracted from each site. Similarly, in the quantum regime, the
array is described by the Hamiltonian

H0 = 4EC

∑
ij

(ni + qi)C
−1
ij (nj + qj)−EJ

∑
〈ij〉

cos(φi − φj) (17)

with [ni, φj ] = iδij , which is the obvious generalization of eq. (9). With these, we can use
the same procedure as that for a single junction, which leads to the conclusion that the FD
relations in eqs. (8) and (11) are applicable to junction arrays as well [12].

To examine the implications of the FD relations to array systems, we consider a 2D
array at zero (direct) current bias, which is well known to display the Berezinskii-Kosterlitz-
Thouless (BKT) transition [13] at T = TBKT. According to the dynamic theory of the BKT
transition [5, 14] and ac electrical measurements [15], the contribution of the vortex bound
pairs is screened out by the free vortices and the imaginary (inductive) part of the frequency-
dependent complex impedance sharply decreases to zero at frequency-dependent temperature
Tω (> TBKT), which is accompanied by a peak of the real (resistive) part. The FD relation
in eq. (8) then suggests that the voltage power spectrum Sv(ω) as a function of temperature
should also show a peak at T = Tω. The voltage power spectrum, which, to our knowledge,
has not been reported on a 2D array near the BKT transition temperature, can be measured
in equilibrium and complement another equilibrium measurement obtaining the flux noise
spectrum [16]. In the latter, an interesting relation between the flux noise spectrum and the
frequency-dependent conductivity has been examined at T ≈ TBKT [17]. It would thus be an
interesting topic in the future work to investigate in this region the connection between the
voltage spectrum and the flux noise spectrum.

For large bias currents (I > 1), the voltage spectrum Sv(ω) has been studied numerically
in 2D RSJ arrays [4], which indeed has revealed the correlation peaks as in eq. (15). Further, it
has been observed that the peaks in Sv(ω) disappear at temperature T ≈ 1 (≡ EJ/kB), which
happens to correspond to the BKT vortex unbinding transition temperature in the absence of
the bias current. Here we point out that the apparent disappearance of the peak has little to
do with the phase transition; rather eq. (15) shows that it is just a crossover. This is consistent
with the result that there should be no phase transition in the 2D array driven by external
currents larger than the junction critical current [18].
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Himbergen J. E. and José J. V., Phys. Rev. Lett., 78 (1997) 519.

[17] Houlrik J., Jonsson A. and Minnhangen P., Phys. Rev. B, 50 (1994) 3953; Jonsson A. and
Minnhagen P., Phys. Rev. Lett., 73 (1994) 3576.

[18] Choi M. Y. and Kim S., Phys. Rev. B, 44 (1991) 411.


