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Abstract. We consider a quasi one-dimensional configuration consisting of two small pieces of
ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-
polarized current is injected from one lead. Our goal is to investigate the correlation induced
between the magnetizations of the two ferromagnets by spin-transfer torque. This torque results
from the interaction between the magnetizations and the spin polarization of the current. We
discuss the dynamics of a single ferromagnet, the extension to the case of two ferromagnets,
and give some estimates for the parameters based on experiments.

1. Introduction
As proposed by Slonczewski [1] and Berger [2], a spin-polarized current flowing through a
ferromagnetic layer exerts a torque on its magnetization. This torque, know as spin-transfer
torque, can move the magnetization if the ferromagnet is small enough, as demonstrated in
experiments [3, 4]. This mechanism allows for current-driven manipulation of the magnetization
as an alternative to the manipulation with a magnetic field. Triggered by the quasi-classical
model with spin-dependent potentials first presented in [1], efforts have be made to refine the
theoretical description of this mechanism [5, 6]. The resulting magnetization dynamics has
been investigated e.g. in [1, 6, 7, 8]. In the present work, we evaluate the spin-transfer torque
within a scattering approach, considering a single conducting channel in the ballistic regime.
Interestingly, this approach yields an expression more general than the quasi-classical model used
in [1] or the Landauer-Büttiker-like formalism developed in [5], but similar to the results obtained
within magnetoelectronic circuit theory [9] or a diffusive transport analysis [8]. We also discuss
the application of this approach to investigate the correlated dynamics of the magnetizations in
a multilayer structure with two ferromagnetic layers.

2. Spin-transfer torque in a single ferromagnet
We consider a small piece of ferromagnet contacted by two metallic leads such as in figure 1.
We are interested in the dynamics of the magnetization !S of the ferromagnet caused by
the flow of spin-polarized currents through the structure. By conservation of angular
momentum, the change rate of the magnetization is given by the net spin flux transfered to
the ferromagnet, d!S/dt = !Fnet. The net spin flux is given by the difference of the rightward spin
current densities at both sides of the ferromagnet, !Fnet = !QL − !QR. This flux results from the
change of spin polarization of the transmitted, reflected, and incoming currents caused by spin
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filtering at the metal-ferromagnet interfaces. This quantity is also called spin-transfer torque
and reflects the reaction of the spin-polarized currents on the magnetization.

For simplicity, we consider a single conducting channel below the Fermi level [see figure 2(a)].
We model the propagation of the electrons along the structure by plane waves. The wave
functions in the left and right metallic areas are thus given by

ΨL(x) = χaLeikinx + χbLe−ikinx,

ΨR(x) = χaRe−ikinx + χbReikinx,
(1)

where x is the coordinate along the structure and kin the Fermi wave vector. The spinor χ of
each wave gives the amplitudes of its two spin components. The corresponding spin current
densities read

!QL =
h̄

2
vin

[
χ†

aL!̂σχaL − χ†
bL!̂σχbL

]
,

!QR =
h̄

2
vin

[
χ†

bR!̂σχbR − χ†
aR!̂σχaR

]
,

(2)

where vin denotes the Fermi velocity and !̂σ the vector of Pauli matrices. The spinors of the
outgoing waves (denoted by an index a) are related to the spinors of the ingoing ones (index b)
through the 4 × 4 scattering matrix S,

(
χbL
χbR

)
= S

(
χaL
χaR

)
. (3)

Thus, it suffices to solve the scattering problem in order to obtain the net spin flux in terms of
the spin polarization of the incoming currents.

In the ferromagnet, the electrons with spin parallel and anti-parallel to the magnetization
have energies split by the exchange energy EX [see figure 2(b)]. As a consequence, there are
two different wave vectors k± at the Fermi energy EF. Furthermore, the lateral confinement
energy defining the band bottom may be different in the ferromagnet (E′

⊥) and in the normal
metal (E⊥). These two effects may be captured in a dimensionless exchange splitting ε =
EX/(EF − E⊥) and a dimensionless band shift ∆ = (E′

⊥ − E⊥)/(EF − E⊥), yielding the wave
vectors κ± = k±/kin =

√
1 −∆± ε/2 with respect to the Fermi wave vector kin in the normal

metal.
Solving the matching equations for the wave function and its derivative at both interfaces,

one obtains the scattering matrix

S =
(

r̂e−ikin(w−2x0) t̂e−ikinw

t̂e−ikinw r̂e−ikin(w+2x0)

)

(4)

for a ferromagnet of width w centered at position x0. It involves the transmission and reflection
matrices t̂ = (1̂ + !n · !̂σ)t+/2 + (1̂ − !n · !̂σ)t−/2 and r̂ = (1̂ + !n · !̂σ)r+/2 + (1̂ − !n · !̂σ)r−/2, defined

aL

bL

bR

aR

x0

mR

mL

N NFM

w

S

Figure 1. Building block for a magnetic multilayer
nanopillar: a small piece of ferromagnet between two normal
metal areas. Currents with spin polarizations along !mL,R
are injected from both sides (amplitudes aL,R) and are partly
transmitted to the other side, partly reflected to the same
side (amplitudes bL,R). The ferromagnetic layer of width w

centered at position x0 carries a magnetization !S.
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Figure 2. Band structure in (a) the normal metal areas and (b) the ferromagnet, and
corresponding wave vectors at the Fermi level. We assume that a single channel with parabolic
dispersion crosses the Fermi level. In the ferromagnet, the dispersions for the two spin
polarizations with respect to the magnetization are shifted by the exchange energy EX. We
also allow for an overall shift E′

⊥ − E⊥ of the band bottom with respect to the normal metal
area.

in terms of the unit vector !n = !S/S pointing in the direction of the magnetization, and of the
transmission and reflection amplitudes (with the index σ = ±)

tσ =
[
cos (kσw) − i

2

(
κσ +

1
κσ

)
sin (kσw)

]−1
,

rσ =
i
2

(
κσ − 1

κσ

)
sin (kσw)

[
cos (kσw) − i

2

(
κσ +

1
κσ

)
sin (kσw)

]−1
.

(5)

Combining these results with (2) and (3), one obtains an expression for the net spin flux
transfered to the ferromagnet

!Fnet =
h̄

2
vin !n ×

[
−

(
1 − Re

{
t∗+t− + r∗

+r−
})

!n × (!mL + !mR) − Im
{
t∗+t− + r∗

+r−
}

(!mL + !mR)

+ Re
{
t∗+r− + r∗

+t−
}
!n × !mLR − Im

{
t∗+r− + r∗

+t−
}
!mLR

]
.

(6)
It involves the vectors !mL = χ†

aL!̂σχaL and !mR = χ†
aR!̂σχaR, which point in the direction of the

spin polarization of the currents incoming from the left and right metallic areas [see (2)], as well
as the vector !mLR = 2 Re

{
e−2ikinx0χ†

aL!̂σχaR

}
.

3. Dynamics of a single ferromagnet
We now investigate the magnetization dynamics in a structure with a single ferromagnetic layer
such as in figure 1, with a spin-polarized current incoming from the left (χaL = χin) and none
from the right (χaR = 0). The charge current density is given by jin = evinχ

†
inχin. If the

injected current is perfectly spin-polarized, !nin = χ†
in!̂σχin/(χ†

inχin) is a unit vector pointing in
the direction of the spin current density [10]. Rewriting the equation of motion d!S/dt = !Fnet of
the magnetization for the unit vector !n = !S/S and substituting the result (6), one obtains

d!n
dt

= Ω [− Re{c}!n × (!n × !nin) + Im{c}!n × !nin] . (7)

The time scale is set by the frequency Ω = (h̄/2S)(jin/e). The properties of the ferromagnetic
layer enter through the real and imaginary part of the coefficient c = 1 − t∗+t− − r∗

+r−,
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which take values in the intervals 0 ≤ Re{c} ≤ 2 and −1 ≤ Im{c} ≤ 1 [see figure 3].
This coefficient c = g↑↓ − t↑↓ is the difference of the reflection and transmission mixing
conductances [6]. It is interesting to notice that the second term of the torque on the right-hand
side of (7), pointing in the direction of !n × !nin, does not appear in the quasi-classical result
obtained in [1] and in the expression derived in [5] upon ensemble averaging within a Landauer-
Büttiker scattering formalism. However, such a term is also obtained within magnetoelectric
circuit theory [9] or by solving diffusive transport equations [8].

The equation of motion (7) clearly conserves the unit length of !n. It is convenient to use a
coordinate system in which the z-axis points in the direction !nin of the spin polarization of the
incoming current and to parametrize !n in spherical coordinates, !n = (sin θ cosϕ, sin θ sinϕ, cos θ).
This yields the equations of motion

dθ/dt = −ΩRe{c} sin θ(t) , (8a)
dϕ/dt = −Ω Im{c} , (8b)

which have the solution

tan [θ(t)/2] = exp (− Re{c}Ωt) tan [θ(0)/2] , (9a)
ϕ(t) = − Im{c}Ωt + ϕ(0) , (9b)

for a given initial condition θ(0), ϕ(0). Thus, in this simple model, the magnetization will align
itself with the direction !nin of the spin polarization of the incoming current in a characteristic
time (Re{c}Ω)−1, unless it initially points in the unstable anti-aligned direction −!nin. This
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Figure 3. Real part [(a), (b)] and imaginary part [(c), (d)] of c = 1− t∗+t− − r∗
+r− as a function

of the dimensionless exchange splitting ε and band shift ∆. It is computed for a multilayer
structure characterized by kinw = 40. The graphs (b) and (d) show a cut of the density plots (a)
and (c) along the line ∆ = 0.
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Figure 4. The dynamics of the magnetization direction !n(t)
starting from an initial condition θ(0) = 7π/12 and ϕ(0) = 0,
calculated with the parameter c = 0.04 − 0.26i.
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Figure 5. A pillar with two ferromagnetic layers. A current with spin polarization along !nin is
injected from the left. The component which is transmitted to the central metallic region can
be reflected back and forth and induce correlations of the magnetizations !S1 and !S2 of the two
ferromagnets.

motion will be accompanied by a precession at frequency Im{c}Ω around the same direction !nin.
An example is shown in figure 4.

Here we have investigated the dynamics induced by the spin-transfer torque only. A more
complete analysis would take into account as well the effects of Gilbert damping and of a finite
anisotropy field, as done e.g. in [1, 7, 8]. In this case, one typically finds either a steady precession
of the magnetization or a magnetization reversal above a given current threshold, depending on
the direction of the anisotropy field with respect to !nin.

Realistic estimates for the parameters involved can be extracted from state-of-the-art
experiments. In [4], a magnetization density µ0MS = 0.81 T has been reported for a 4-nm thick
permalloy film, yielding S = h̄MSV/(gµB) ≈ 106h̄ for a layer of cross-section 130 × 60 nm2.
This gives Ω ≈ 3 ns−1 for an injected current jin = 1 mA. The band structure of a 3.5-nm
thick permalloy film grown on Ni has been investigated by angle-resolved photoemission in [11].
From this data we estimate ε ≈ 0.3, assuming ∆ = 0 and taking kin ≈ 10 nm−1 in Cu. This
yields c = 0.04 − 0.26i for w = 4 nm.

4. Correlated dynamics of two ferromagnets
The formalism presented in section 2 can be applied to investigate the magnetization dynamics
induced by the flow of a spin-polarized current in a system with two ferromagnetic layers such
as the one depicted in figure 5. One component of the injected current is reflected by the first
ferromagnet and another one is transmitted in the central region. There, it can be reflected
back and forth before being transmitted to either side. Thus, the net spin fluxes through the
two ferromagnets are correlated. As a consequence, the dynamics of the two magnetizations will
also be correlated.
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This effect can be investigated by solving the coupled equations of motion

d!n1/dt = F (1)
net , (10a)

d!n2/dt = F (2)
net . (10b)

The net spin flux through the first ferromagnet !F (1)
net is given by substituting the

magnetization !n1, the transmission and reflection amplitudes t(1)± and r(1)
± , and the incoming

current amplitudes χaL = χin and χaR = χc− in expression (6). Similarly, the flux !F (2)
net is given

in terms of !n2, t(2)± , and r(2)
± , with the substitutions χaL = χc+ and χaR = 0 (see figure 5). Here

again, by solving the scattering problem one can express the spinors in the central region in
terms of the spinor of the incoming current,

χc+ = e−ikinw1
[
1̂ − e2ikinwN r̂1r̂2

]−1
t̂1χin , (11a)

χc− = eikin[wN−(w1+w2)/2]r̂2

[
1̂ − e2ikinwN r̂1r̂2

]−1
t̂1χin . (11b)

The transmission and reflection amplitudes of each ferromagnetic layer depend on the
magnetization direction. This is the origin of the coupling between the equations of motion (10a)
and (10b). The problem becomes easier when the first ferromagnetic layer is much thicker than
the second one, implying S1 % S2. Then, !n1 can be considered as fixed while solving the
equation of motion for !n2. The solution of these problems is the object of work in progress.

In conclusion, we have evaluated the spin-transfer torque within a scattering approach for a
single channel in the ballistic regime, and discussed the extension of this formalism to investigate
correlated magnetization dynamics in multilayer magnetic nanopillars.
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